
SKETCHES OF SOLUTIONS : ENDTERM EXAMINATION - ALGEBRA I -

AUGUST-NOVEMBER 2024

Note: This document has not been checked for errors or inaccuracies and as such may contain some. That
DOES NOT mean that the problems on the exam were necessarily wrong.

(1) Let A be the following matrix, considered as a matrix over complex numbers: 1 0 −4
−6 −1 −12
0 0 −1

 .

(i) Find eigenvalues of A.
(ii) Find a basis for each eigenspace corresponding to each eigenvalue of A.
(iii) Give an invertible matrix P and a diagonal matrix D such that A = PDP−1, or explain why none

such can exist.

(10 marks)

Sketch of solution: Characteristic polynomial of A is determinant of (xI − A). Expanding the deter-
minant using the last row, we get the characteristic polynomial to be (x − 1)(x + 1)2. So eigenvalue 1
appears with algebraic multiplicity 1 and eigenvalue −1 appears with algebraic multiplicity 2.

For a basis of the eigenspaces: For eigenvalue 1, solve the system of linear equations 0 0 −4 | 0
−6 −2 −12 | 0
0 0 −2 | 0

 .

Row reduce to get that the eigenspace is given by

x2

− 1
3
1
0

 .

so a basis is given by − 1
3
1
0

 .

For eigenvalue −1, solve the system of linear equations 2 0 −4 | 0
−6 0 −12 | 0
0 0 0 | 0

 .

Row reduce to get that the eigenspace is given by

x2

01
0


so that a basis is given by 01

0

 .

and the geometric multiplicity is 1.
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Since algebraic multiplicity ̸= geometric multiplicity for each eigenvalue, we know that the matrix is not
diagonalizable.

(2) Suppose A is an n × n matrix with real entries such that the diagonal elements are all positive, the
off-diagonal elements are all negative, and the row sums are all positive. Prove that det(A) ̸= 0.
(10 marks)

Sketch of proof: It suffices to prove that the system of equations AX = 0 only admits the trivial so-
lution. Let a solution be given by

X =


x1

x2

...
xn

 .

Pick an index k such that |xk| = maxi=1,2,...,n |xi|. So that |xj | ≤ |xk| for all j. The idea is now to look at
the kth row (AX)k of the equation AX = 0 and arrive at a contradiction.

If xk > 0, then xj ≤ |xj | ≤ |xk| = xk for all j. Then,

0 = (AX)k =

n∑
j=1

Akjxj

= Akkxk +
∑
j ̸=k

Akjxj

≥ Akkxk +
∑
j ̸=k

Akjxk (since Akj < 0 forj ̸= k and Akk > 0.)

= xk

n∑
j=1

Akj

> 0,

which is a contradiction.

The case xk < 0 similarly leads to a contradiction once we make the appropriate changes of signs in the
above equations.

So xk = 0, but then xj = 0 for all j by choice of xk, so that X has to be the zero vector, and we are
done.

Remark: This simple fact is called ‘Minkowski’s Criterion’ and is quite useful.

(3) Find the shortest distance from the point (1, 1, 2) to the plane x1 − x2 + x3 +1 = 0 in the 3-dimensional
euclidean space with the usual dot product. Justify why your answer must be the shortest distance. (Note
that this plane is NOT a vector subspace of the 3-dimensional euclidean space.)
(10 marks)

Sketch of solution: This follows from Gram-Schmidt process and orthogonal projections as we have
seen in the class, after doing computations appropriately.

(4) This question is about symmetric bilinear forms.

(i) Let A and A′ be symmetric matrices related by A′ = P tAP , where P is invertible. Show that the ranks
of A′ and A are equal. Show as a consequence that we can define the rank of a bilinear form ⟨, ⟩ on a
real finite dimensional vector space V as the rank of any matrix representing it.
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(ii) Prove or disprove: a nonzero symmetric bilinear form ⟨, ⟩ on a real finite dimensional vector space V
is of rank 1 if and only if it is a product of two nonzero linear functionals, i.e. ⟨v, w⟩ = f1(v)f2(w) for
f1, f2 ∈ V ∗.

(15 marks)

Sketch of proof: For the first part, the easiest way is to note that P and P t both correspond to bi-
jective functions on image of A, so that they cannot make any change to the rank of A.

For the second part, in fact, there is no need to assume symmetric property of the bilinear form. Let
us prove the result for any bilinear form ⟨, ⟩. The below proof becomes much simpler if the bilinear form is
assumed to be symmetric as in the original question.

Let n = dim(V ). Consider two maps fL : V → V ∗ defined by fL(x)(y) = ⟨x, y⟩ and fR : V → V ∗ de-
fined by fR(x)(y) = ⟨y, x⟩. Then, choose a basis (v1, v2, . . . , vn) of V and the dual basis (v∗1 , v

∗
2 , . . . , v

∗
n) of

V ∗. Then, by the definition of a dual basis, if we write matrices of these two maps in these bases, for one
of them we get the matrix A associated to ⟨, ⟩ and for the other we get its transpose At. Then we know
that fL and fR both have rank 1 by hypothesis. So ker(fL) has a basis of n− 1 vectors, say u2, u3, . . . , un.
Similarly ker(fR) has a basis of n− 1 vectors, say v2, v3, . . . , vn.

Now let u1 ̸∈ ker(fL) and v1 ̸∈ ker(fR), and c = ⟨u1, v1⟩. Then c ̸= 0 (otherwise ⟨, ⟩ is zero everywhere).
Then, u1, u2, . . . , un and v1, v2, . . . , vn are bases of V . Define L1 ∈ V ∗ by L1(u1) = 1 and L1(uk) = 0 for
k > 1. Define also L2 ∈ V ∗ by L2(v1) = c and L2(vk) = 0 for k > 1. Then ⟨ui, vj⟩ = L1(ui)L2(vj) for any
i, j, and the result follows by bilinearity.

Remark: The first ever example of a bilinear map that you saw was the multiplication map R × R →
R : (x, y) → xy. This is clearly rank 1. The above problem says that all rank 1 forms on any finite dimen-
sional vector space essentially look like multiplication.

(5) Let V be a finite dimensional vector space over C. Show that the signature of a Hermitian form
⟨, ⟩ : V × V → C is independent of the orthogonal basis chosen to write its matrix.
(15 marks)

Sketch of proof: This is Sylvester’s Law, which was also on the homework. You can find the proof
in many sources. In particular, one can prove that the signature is given by the number of positive eigen-
values and the number of negative eigenvalues, which is independent of the basis chosen.

(6) Let n > 1 be an integer. Let ζn = e
2πι
n and let A denote the n × n matrix whose entries are aij =

ζij
n√
n
.

Is A a unitary matrix?
(15 marks)

Sketch of solution: Yes. This follows from taking the inner product of column vectors with themselves
and summing appropriately over powers of ζn.

Remark: This simple technique and fact can be quite useful in representation theory and physics. Look up
‘Complex Hadamard Matrices’ for more information.

(7) Let n > 1 be an integer and A be a real n × n matrix, where all entries are zero except those on
the diagonal and those in the first row and first column. Also assume that all diagonal entries of A are
nonzero and that all entries in the first row and first column of A are strictly positive. Show that all the
eigenvalues of A are real.
(10 marks)
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Sketch of proof: The idea is to show that A is similar to a symmetric matrix. Let

A =

[
a βt

γ D

]
where D is the (n− 1)× (n− 1) nonsingular diagonal matrix coming from the question, a = a11 is the upper
leftmost entry, and β and γ are vectors all whose entries, say β1, . . . , βn−1 and γ1, . . . , γn−1 respectively, are
positive.

Then, working with 2 × 2 or 3 × 3 matrices as an example, it is possible to arrive at a particularly simple
way of symmetrizing. Namely, consider a diagonal matrix

P =

[
1

Y

]
where Y is an (n− 1)× (n− 1) diagonal matrix, say with diagonal entries y1, . . . , yn−1. Then define

B := PAP−1 =

[
a βtY −1

Y γ Y DY −1

]
.

Note that Y DY −1 is a diagonal matrix, so that B is symmetric if and only if βtY −1 = Y γ. This happens if
and only if

yiγi =
βi

yi
,

that is, if and only if

y2i =
βi

γi
for each i = 1, 2, . . . , n−1. Since βi and γi are strictly positive, we can choose such yi and hence A is similar
to B which is a symmetric matrix, and thus its eigenvalues are real.

(8) Let V be an infinite dimensional vector space over a field F . Let T : V → V be a linear operator
such that T (V ), the image of T , is finite dimensional.

(i) Show that T satisfies a nonzero polynomial over F .
(ii) Assume, in addition, that T 2(V ) = T (V ). Show that V = ker(T )⊕ T (V ).

(15 marks)

Sketch of proof: For the first part, if the dimension of T (V ) equals n, choose a set v1, v2, . . . , vn of
vectors in V such that T (v1), . . . , T (vn) forms a basis for T (V ). Then, for each i = 1, 2, . . . , n, since
T (vi), T

2(vi), . . . , T
n+1(vi) are all in T (V ), there has to be a nontrivial linear relation among them, and so

for each i, there exists a polynomial Pi(x) such that Pi(T (vi)) = 0. Then take P (x) = x
∏n

i=1 Pi(x) and see
that T satisfies this polynomial (the first line of the next paragraph is used here, in fact).

For the second part, note that for any v ∈ V , T (v) = T 2(x) for some x, so that y = v − T (x) lies in
kernel of T . Hence, v = y + T (x) shows that V = ker(T ) + T (V ). To show that it is a direct sum, simply
note that the linear operator Tres : T (V ) → T (V ) gotten by restriction of T to T (V ) → T (V ) is a surjection
by hypothesis, and since T (V ) is finite dimensional, it also is injective by counting dimensions. So that
kernel of Tres is {0}, which implies that it is a direct sum, since any element of ker(T ) ∩ T (V ) is an element
of this kernel.

Food for thought: Do eigenvalues for such operators appear as roots of some polynomial?

(9) This is an EXTRA CREDIT question. The solution to this question may depend on significantly
more difficult or different concepts than what you may have seen during this course. So it is NOT recom-
mended that you attempt and spend time on this question before attempting other questions.

Let V be an infinite dimensional vector space over C with basis B.
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(i) Show that B∗ := {v∗ : v ∈ B} does not span V ∗.
(ii) Show that V ∗ is isomorphic to the direct product of copies of C indexed by B. Can you say something

nontrivial about the dimension of V ∗ from this?

(20 marks)

Sketch of proof: Since this is an extra credit question, this is left as an exercise!
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