
Class Notes

Class: Algebra I

Professor: Aditya Karnataki

ONE OF THE MOST IMPORTANT COURSES! WILL COME UP IN EVERY
PLACE: Math, Engineering, Economics, ... maybe even poetry.
A simple way to be good at linear algebra is to think straight!
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1 ADITYA KARNATAKI SIR’S KNOWLEDGE 1

1 Aditya Karnataki sir’s Knowledge

To be set in CMI, be good at Linear Algebra, Calculus, Statistics and Programming.

I can teach you how to bewitch the mind and ensnare the senses. I can tell you how to bottle
fame, brew glory, and even put a stopper in death. Snape meant it about potions, but I mean
it about linear algebra.

Solve all problems. Solving problems is math, talking about math is not math!

You are all here as you like doing mathematics. No one begins math by thinking about a career
in it, you do it as it gives you joy. You will remember your exams and the problems which you
solved ingeniously and it will give you joy. Cling to the joy, and don’t let it go!
Because this is what math is.

We could have mathematica or desmos do it, but we wish to do our own math. Not let others
do it for us.

Tommorow is independence day, but we will still have a class, as there is no independence form
mathematics. And why would we even want that?

You all always steal my punchline. All of you would be very bad stand-up audience.

There are no questions which are silly. Except "Who am I?" which philosophers have anyhow
been asking for centuries. They give silly answers as well. Like "I am he". Barbie had a better
answer then them, "I am a Barbie girl!"

Pivots play a pivotal role.

There is a wide wide world to explore. And all of it will need linear algebra!

Some questions seem like existential questions but sometimes we don’t need to answer them.
We don’t need to wait for an angel to descend from heaven to answer it, we can just say, for me
the answer is this and it works, as long as it makes sense.

Good attendance. That means I am a good teacher, atleast that is what I tell myself when I lay
in bed at night, in despair.

Do not get caught in the quotes of great mathematicians. Everyone has their own journey.

[written on board] Nudge nudge wink wink

The one basis to span them all. <Dead silence> Lord of the Rings. Like I am the lord of the
jokes. That way someone can throw something into a volcano and all my jokes will go away.

I wrote one of my papers by choosing a different basis. So even that came down to linear
algebra. Sometimes math comes down to such choices. SO you should be willing to make such
choices. What if people worked with some basis for 40 years? This one makes my work easier.
Although, it sometimes makes your work harder as well, people used the basis for 40 years for
a reason.

Yes, we can! that’s what Obama said in 2008. Wait, you all too young for that.

It is okay to be stupid. Oh, I meant it is okay to feel stupid.

I can’t see. I have washed my glasses with ragda pattis.

As Sherlock says to Watson, "It is simple." <some guy from class "Trivial">, We don’t use that
word here. If I see it anywhere in your quiz or exam answer, it is 0, trivially.

<some guys alarm rings> Come on! You are allowed to sleep in my class but putting an alarm?
That’s just insulting. I will tell you when I am going, I am a better alarm.
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1 ADITYA KARNATAKI SIR’S KNOWLEDGE 2

If I want to see if I can lift weights, I go and lift ten kilos. I don’t life hundred kilos. That won’t
happen, atleast not overnight.

I suggest you keep philosphical discussions about "Axiom of Choice" away till you becoe a
proffesor or get a job. That is unless you want to enter set theory and formal logic. In that
case, your getting a job may depend on you thinking about this. However, for my class, we
belive in axiom of choice. See my job is to do math, not talk about it. Like I like talking about
it, that is why I am taking this class. But if taking axiom of choice allows me to work with
infinite vector spaces, which is more rewarding, I will accept that.

Mein lagta hoon utna bewkoof nahi hoon (I am not as foolish as I look).

It is said that in CMI, you can easily miss the boat. However, if you are already on the boat,
how can you miss it? Just like how math is locally trivial, so is study and preperation.

Linearity should be by now, fami-linear?

<what does your t-shirt say?>
It is just a dragon ball t-shirt. Any of you know dragon ball? It is the tshirt Goku wears. It
reads ’Go’ which means wisdom. As I don’t have it in my head, I have it on my T-shirt. I hope
none of you read it as ’Go’ and understood that attendence is over and now want to go.

<How is the pattern of the exam?>
I don’t know. I am sure it must be doing well.

About the exam pattern, I am as clueless as you are. Sometimes even more.

ψ and φ. Psi and phi. There will be a lot of psi and a lot of phi. A lot of sight and a lot of fight,
hence it is sci-fi. I hope you have the sight to see and it and the fight to fight it.
This joke is quite light.
This is what I think about at night.
Let’s return to the blackboard, which is not white.
Right?

Let there be no trace of midterms in your mind.

Let that not be a determinent of what happens in this class.

This class and the midterm are linearly independent.

<sir, no fans!> I see, I don’t have fans in this class. But I am not here to collect fans, I am here
to do linear algebra.

There may be an analysis questions in algebra exam. There may be a number theory question
in your topology course. It’s not a me issue, it is a math issue. Math doesn’t say this question
has only linear algebra.

I have issues with number theory. Why else do you think I am balding so much? I pull my own
hair.

Find the isomorphism of sections from Artin to Hoffman-Kunze. I will depend on these coordi-
nates.

Sometimes math is unmotivated. The motivation arrives late, but till then your perseve and
subsist and find a thesures and find synonyms of perseve and subsist.

It all depends on what you remember and what you forget. I am a very forgetful person. THere
will also be forgetful functors , when you go to category theory. So there are other things than
forgetful teachers,

We have exited the realm of real numbers and entered the complexity of complex numbers.
Don’t complexify the situation. I hope I didn’t give you all a complex.
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Algebric multiplicity. AM.
Geometric multiplicty. GM.
So AM ≥GM. (laughs manically like an evil scientist who just made a ’breakthrough’)

Not everything can be taught in the class, this is what you must learn from this class.

Questions in real life will not ask you if you learnt this in the course on linear algebra. You
just need to learn it.

Symbols appear on the white board when you write them with white chalk... or colored chalk.
But we must know what these symbols mean.

<walks in while discussing Julias Caeser> So many people today. Play reharsal? Ah, exactly
23 people. Please keep weapons outside. Who is Brutus anyway?

<Aditya Vashishth interupts> Hey, only one Aditya may speak at a time.

Pi is overloaded. Actually, P is overloaded. Actually, all letters are overloaded.
You only get small pi.

The chalk didn’t chalk.
Chalk the Chalk on the Chalk(chowk?).
You have to chalk the talk. Like Walk the talk.
Like, you have heard Walk the Talk, right?
Like you have to walk
You can’t just talk.

<shouting> REMEMBER, REMEMBER. DO NOT FORGET!
DO NOT FORGET THE FIFTH OF NOVEMBER!
<What?>
That reference is lost to you all. It is from ’V For Vendetta’

Hermitian forms are not called Hemitian as they are hermits in the world of forms. They are
not socially hermits. They are actually ’Hormit’.

The choice of bar on variable is purely a choice. It has no Inner, pun intended, effects.

DON’T PANIC!
As is said on the first page of Hitchiker’s guide said.
I’ll probably put that on the first page of your exam sheet.
<That would probably feel like a mock>
So I’ll write "PANIC"
<Um...>
There’s no pleasing you all. I’ll just write FEEL FREE TO PANIC OR NOT.
Wait, that’s a tautology.

Sometimes you come to an answer, then feel it can’t be write and write a completely brand new,
wrong answer. Don’t do that. Trust your intuition.
<Doesn’t our intuition only cause us to do so?>
Um, so have you guys seen Inside Out 2? Don’t listen to the orange guy.
Wait, I am wearing orange.

<Everything is basic.> Yah, everything is basic, only I am acidic.

A real vector space is on reals.
It is real man!
So real that it is complex.

Spectral Theorem.
This theorem will haunt you for rest of your life.
Specter?
It will give you nightmares.
So hold your horses.
Horses, mares?
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The TAs have informed me that my bad humor has rubbed off you all. Although, I don’t pay
much heed to them. They are rather humorless.

Midway switching notation.
Good for health.
Neither yours, Neither mine.
Thankfully, I don’t get marks.

2 Why study linear algebra?

Linear algebra is the study of linearity. It may be hidden, is very well hidden in most cases, but once
found, we can pounce with linear algebra. Linear equations are the simplest. I can’t drive a F1 car, but I
can use my ideas of driving cycle to understand F1 racing. Even when the situation is not linear, we can
use linearity to understand. Similar to how a tangent line of a curve can approximate a function.

Definition 2.1. ! in a math statement means ’unique’

3 9 August, 2024

Definition 3.1. For now,
Rn = {[v1,v2, . . . ,vn]T | v ∈R}

is the set of vectors in n-dimensional space.
An n-coordinate vector is an element of R.
This is denoted as~v and ~w but later only as v and w.

3.1 Addition on vectors
Addition is performed entrywise for both row and column vectors.

+ :Rn ×Rn →Rn

The obvious properties of addition (using geometry and/or definition) are:

~v+~w = ~w+~v

(~u+~v)+~w =~u+ (~v+~w)

∃~0 such that~v+~0=~v =⇒ ~0= [0,0, . . . ,0]

The negative of~v exists and satisfies~v+ (−~v)= 0, which implies that −~v = [−v1,−v2, . . . ,−vn].

3.2 Scalar multiplication
Scalar multiplication is performed entry-wise for both row and column vectors.

Definition 3.2.
· :R×Rn →Rn

The obvious properties are:
1 ·~v =~v

(c1c2)~v = c1(c2~v)

(c1 + c2)~v = c1~v+ c2~v

c(~v+~w)= c~v+ c~w
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3.3 We change the definition!
Definition 3.3. A vector space over real numbers is a set V with two operations such that

+ : V ×V →V

· :R×V →V

satisfying all the properties listed above.

With this, we finally introduce the definition of a field.

Definition 3.4. Informally, a set of "numbers" where you can add, subtract, multiply, and divide by any-
thing non-zero is a field.

Doing so formally,

Definition 3.5 (Artin 3.2). A field is a set F together with (+,0,−, ·,1, ()−1) where:
• 0,1 ∈ F
• +, · are functions F×F→ F

• − is a function F→ F

• ()−1 is a function F− {0}→ F− {0}
satisfying:
• a+b = b+a
• (a+b)+ c = a+ (b+ c), (a ·b) · c = a · (b · c)
• a+0= a, a ·1= a
• a+ (−a)= 0
• a ·a−1 = 1
• a(b+ c)= ab+ac

4 13 August, 2024

4.1 Recall
Vectors were defined as:

Rn =




v1
v2
...

vn

 | vi ∈R


where the elements of Rn are called n-dimensional vectors. Here, Rn is the n-dimensional vector space.

A vector space is defined by the following properties:
• Any vectors of the "same size" can be added or subtracted.
• You can scale any vector by a real number.

4.2 Matrices

Matrices are arrays of numbers1.
An r× c matrix has r rows and c columns. We can multiply an r× c matrix with a column vector in Rc2.
More generally, we can multiply an Ap×q matrix with a Bq×r matrix to get the product AB, which is a

p× r matrix3. Note that BA may not exist and only exists if p = r.
We can add matrices of the same size element-wise and also scale matrices (multiply by a scalar)

element-wise.
Notice that these are the same properties as vectors, except that we can also multiply matrices.

1Actually, they are linear transformations, not just arrays of numbers.
2This is a linear transformation from Rc to Rr .
3Why isn’t the instructor focusing on linear transformations?

Algebra I



4 13 AUGUST, 2024 6

4.3 Properties of Matrix Multiplication
Why don’t we multiply vectors element-wise? The simple answer is that it is a useless operation:[

1
0

]
¯

[
0
1

]
=

[
0
0

]
This shows that multiplying a vector on the x-axis with another on the y-axis gives the zero vector, which
doesn’t provide meaningful information. Rotating this by 45◦ gives us:[−1

1

]
¯

[
1
1

]
=

[−1
1

]
This is a senseless operation to begin with. Hence, we don’t define vector multiplication this way4.
Now, let’s consider the properties of matrix multiplication as it is normally defined:

• (AB)C = A(BC)
• (A+B)C = AC+BC
• C(A+B)= CA+CB
• The identity matrix Ip×p = Ip is a square matrix with 1s on the diagonal (i = j) and 0s elsewhere.

4.4 Systems of Linear Equations
We can use matrices to define a system of linear equations. For example:

6x− y= 35x+2y= 10

can be written as: [
6 −1
5 2

][
x
y

]
=

[
3
10

]
This means we can use matrices to solve equations. Let’s first talk about simple cases.

4.4.1 Small Cases: 1 Equation in 1 Variable

3x = 6 (1 solution)

0x = 6 (no solution)

0x = 0 infinitely many solutions

We can now expand this to more variables:

# of Variables # of Equations Picture # of Solutions
2 1 Line ∞ (1-dimensional)

2 Intersection of two lines
(1) Same line ∞ (1-dimensional)

(2) Parallel lines 0
(3) Intersect at one point 1

3 1 Plane ∞ (2-dimensional)
2 Intersection of two planes

(1) Same plane ∞ (2-dimensional)
(2) Parallel planes 0

(3) Line ∞ (1-dimensional)
3 Intersection of 3 planes (P, Q, R)

l ∈ R ∞ (1-dimensional)
l||R 0 (0-dimensional)
l∩R 1 (0-dimensional)

4We define multiplication in terms of linear transformations. Just say it!
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4.5 How Do We Solve Equations?
• Reorder equations.
• Scale an equation by a non-zero scalar.
• Add a multiple of one equation to another.

All of this can be done using the matrix representation of Ax = B or the augmented matrix [A | B],
which can be row-reduced.

4.6 Solving an Example
Given the equation:

2x+4y+6z+8w = 1

we can solve for x:
x = 1

2
(1−4y−6z−8w)

This gives us the solution set: {
x = 1

2
(1−4y−6z−8w) | y, z,w ∈R

}
Here, y, z, and w are called free variables, while x is the pivot variable.

Now consider:
2x+4y+6z+8w = 1,

3x+7z+w = 10

This corresponds to the matrix: [
2 4 6 8 | 1
3 0 7 1 | 10

]
We can eliminate x from the second row by performing the operation R2 − 3

2 R1 to get:[
1 2 3 4 | 1

2
0 −6 −2 −11 | 17

2

]
Remark 4.1. We can solve as follows:
1. Take w, z arbitrarily.
2. Solve for y using these values in the second equation.
3. Solve for x using the values of y, z, w in the first equation.

Remark 4.2. We can further simplify by reducing the matrix to remove y:[
1 0 7

3
1
3 | 40

12
0 1 1

3
11
6 | −17

12

]
As we have the largest possible identity submatrix, we call this the row-echelon form.

Note that the solution space has dimension 2.

Definition 4.3 (Preliminary). The solution space has a dimension equal to the number of free variables.

5 15 August, 2024

5.1 Recall
We performed row reduction on matrices last time. The most row-reduced matrix, with a sub-matrix being
an identity matrix, is called the row-echelon form.

5.2 General Procedure
1. Reorder the equations so that the leftmost entry appears in the first row of the augmented matrix.
2. Scale the first equation of the first row to make this entry equal to 1.
3. Make all entries below this entry 0 by subtracting appropriate multiples of the first row.
4. Continue this process from row 2 onward.
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5.3 Shape of the Result
0 0 . . . 0 | 1 ∗ ∗ . . . ∗ | ∗ ∗ . . . ∗
0 0 . . . 0 | 0 0 0 . . . 0 | 1 ∗ . . . ∗
0 0 . . . 0 | 0 0 0 . . . 0 | 0 ∗ . . . ∗
...

...
...

... | ...
...

...
...

... | ...
...

...
...

0 0 . . . 0 | 0 0 0 . . . 0 | 0 ∗ . . . ∗


The leading non-zero entry in any row is called a pivot.

Remark 5.1. "Want to do better"
We can also make entries above each pivot 0.

Note: The operations used are all reversible. This means that we can undo the change from the row-
reduced to the original form.

Example 5.2. Performing an elementary row operation on a matrix M is the same as multiplying M on
the left by a suitable matrix. Find these matrices.
The operations are switching two rows, scaling a row, and adding one row to another.

Solution. Switching two rows is defined by:

1 0 0 . . . 0 0
0 0 1 . . . 0 0
0 1 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1


This particular one switches rows 2 and 3. In the general case, this is simply an identity matrix with the
mth and nth rows interchanged.
Scaling a row is defined by: 

1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 n . . . 0 0
0 0 0 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1


This particular matrix scales row 3 by n. In the general case, this is just the identity matrix with n in
place of 1 in the mth row, causing the mth row to be scaled by n.
The addition of rows is defined by: 

1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
1 0 0 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1


This particular matrix adds row 4 to row 1. In the general case, this is simply the identity matrix with
some (i, j)= 1 where i 6= j. This will cause the jth row to be added to the ith row.

5.4 Row Echelon Form for M

Definition 5.3. A matrix M after a series of operations satisfies the following properties:
• Pivots in successive rows should move strictly to the right (so all entries below a pivot must be 0).
• All rows without pivots must come at the bottom.
• It is customary to have pivots equal to 1.

We already saw the general shape of it before in an aptly titled section.
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5.5 Reduced Row Echelon Form
Definition 5.4. A row-echelon matrix with the additional property that all entries above a pivot are 0.

Example 5.5. Is the row-echelon form of a given matrix M unique?

Proof. This is simply untrue. Just add any of the non-pivot rows to each other.
Since not every row-echelon form is reduced, but every reduced form is row-echelon, this in itself disproves
the statement.

Example 5.6. Prove that the Row Reduced Echelon Form is unique for a given matrix M.

Proof. We will solve using induction. It is trivial to show that this works for an m×1 matrix.
Assume this is true for an m× (n−1) matrix. Then we will prove it for an m×n matrix.
FTSOC, let a matrix A of size m×n have two RREFs, B and C such that B 6= C.
Then by the inductive hypothesis, the difference may only lie in the last row. Let’s consider a system of
equations such that AX = 0 =⇒ BX = CX = 0 where X is a variable vector [x1, x2, . . . , xn]T .
This implies that (B−C)X = 0. Notice that the first n−1 columns will be 0, but as B 6= C, we will have at
least one element bn, j − cn, j 6= 0.
This means we will have xn = 0 using simple vector multiplication.
This implies that the last variable is fixed at 0. This means there must be a pivot in the last column, and
since we are in an RREF, the pivot location is deterministic.
Thus, the last column of B and C is the same, giving B = C.
However, this is a contradiction, and thus, our initial assumption is false. Therefore, any matrix A of size
m×n has a unique RREF.
By induction, all matrices have a unique RREF.

Example 5.7. Prove that the number of pivots in any echelon form is the same for a given matrix M.

Proof. TBD

Definition 5.8. A system of linear equations with at least one solution is called consistent. Having infinitely
many solutions is also considered consistent.

Theorem 5.9. A~x =~b is inconsistent precisely when there is a pivot in the last column of the Row Echelon
Form of the augmented matrix [A |~b].

6 20, August 2024

6.1 Recall
Last we left off, we had studied that Ax = B is consistent if there is a solution.
Ax = B is consistent for all B ∈Rr if and only if there is no pivot in the last column of [A | B].
This also has an if and only if relation with all rows of RREF of A having a pivot.
This also has an if and only if relation with the number of pivots being r.

6.2 Homogeneous Equation
Ax = 0 is always consistent as x = 0 is always a solution for any A. The non-trivial solutions are interesting
in their own way.
Let’s prove a fact.

Example 6.1. Given
S := {x | Ax = b}

Let v be given such that Av = b.

T := {v+ y | A y= 0}

Prove that S = T.
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Proof. We will prove this by proving (I) S ⊆ T and (II) T ⊆ S, which will imply that S = T.
(I) Let x be such that Ax = b. This implies x = v+ y =⇒ y= x−v.

A y= A(x−v)

= Ax− Av
= b−b
= 0

Thus, S ⊆ T.
(II) Let u ∈ T such that u = v+ y, A y= 0. We need to show that Au = b. Notice:

Au = Av+ A y
= b+0

= b

Thus, T ⊆ S.
And as S ⊆ T and T ⊆ S, we have S = T and we are done!

We will also now observe that the number of pivots in RREF of a matrix Ar×c has at most min(r, c)
pivots.
This implies that saying "Ax = 0 has only the trivial solution for a particular matrix A" is equivalent to
saying "Every column of the REF of A has a pivot".
Another strange fact is that Ax = b for any b will either be inconsistent or the solution set will have the
same dimension as the solution set of Ax = 0.

Theorem 6.2. For a square matrix A, Ax = 0 has a unique solution ⇐⇒ Ax = b has a solution for every
b ∈Rr (which then must be unique).

Example 6.3. Prove that two of these imply the third.
(1) A is a square matrix.
(2) Ax = 0 has a unique solution.
(3) Ax = b has a solution for every b ∈Rr.

6.3 Matrix Inverse
We take the row operation matrices to be invertible.
We can notice that for most matrices A such that RREF(A)= I = E−1

1 E−1
2 E−1

3 . . . A,
this implies that A is invertible and its inverse is E−1

1 E−1
2 E−1

3 . . . .

6.4 Matrices as Linear Transforms (Yay!)
f :Rc →Rr

This function can also be written as
f : x → Ax

where A is a r× c matrix and x is a column vecotor with c columns. This makes Ax a column vector with
r columns.
We should also note that Ax = b has a solution if and only if b is in the range(or image) of f .
The normal set theoretic definations still hold. That is:

Definition 6.4. Ax = b has a solution for a all b if and only if f is surjective.

Definition 6.5. If Ax = b has atmost one solution for any b, f is injective or One to One.

Definition 6.6. If a fucntion is both injective and surjective, it is bijective.

6.5 Kernel or Null Space
Definition 6.7.

{x | Ax = 0}

is known as the kernel or null space of A.
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7 22 August, 2024

7.1 Recall
If A is a r× c matrix,

fA :Rc →Rr

x → Ax

Observe that:

A




1
0
...
0


=


a11
a21

...
ar1


Similarly,

A





0
0
...
1
...
0




=


a1i
a2i
...

ari



Where we have the 1 in the ith column. These type of vectors are called e i.
Notice that Ae i is equal to the ith column of matrix A.

Remark 7.1. Thus, it suffices to know Ae i for all 1≤ i ≤ c to know the matrix A.

Remark 7.2. fA is injective =⇒ c ≤ r
fA is surjective =⇒ r ≤ c
fA is bijective =⇒ c = r
However, these are not if and only if type statements. For r = c, there is no guarentee that fa is bijective.

fA injective

Ax = 0 has only the x = 0 solution

Every column of REF(A) has a pivot

For a square matrix A

RREF(A) = Id

Every row of REF(A) has a pivot

Ax = b is consistent for any b ∈Rn

fA surjective

7.2 Inverse, for real this time
For a square matrix A,elementary maticies convert A to it’s RREF that is I En, . . . ,E2,E1.
Notice

En . . .E2E1︸ ︷︷ ︸
E

A = I
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=⇒ EA = I

How do we invert A? Simple, we remember all the row operations we used and multiply them.

Definition 7.3. A matrix A is said to be invertible if there is a matrix Bs.t. AB = I and BA = I.

This clearly implies A = r× c and B = c× r then AB = Ir×r and BA = Ic×c.

Example 7.4. (i) If such B exists for A then it is unique. Call it the inverse of A or A−1.
(ii)

(PQ)−1 =Q−1P−1

Theorem 7.5. If A is invertible, then r = c.

Proof. Let A,B be matrices such that AB exists.
Then,

fa ◦ fb(x)= fa ◦Bx
= (AB)x
= fABx

This implies that fA ◦ fB = fAB.
AB = I =⇒ fA ◦ fB = f I
BA = I =⇒ fB ◦ fA = f I Notice that this implies fA is both injective(r ≥ c) and surjective(r ≤ c) thus, fA is
bijective and r = c.
Thus, inverse only exists for square matrices.

What we just showed is that A is invertible =⇒ fA is bijective ⇐⇒ r = c and RREF(A)= I.

Example 7.6. Prove the converse that is prove that if fA is bijective, then its unique inverse function is in
fact of the form fB for some B.

Proof. TBD

Example 7.7. For square matrices A,B show that AB = I =⇒ BA = I

Proof. TBD

Example 7.8. Find an example such that AB = I but BA 6= I for A,B not being square matrices.

Proof. TBD

Note: Range of fA is Rc where c is the number of columns in A.
If

x =


x1
x2
...

xn

 , Ax = x1[a1]+ x2[a2]+ . . . xc[ac]= x1 Ae1 + x2 Ae2 + . . . xc Aec

7.3 Vector Spaces
Definition 7.9. A vector space V over R is a set V with the two opertions

+ : V ×V →V

· :R×V →V

1. (1) "V is an abelian group under +" which simply means
• ∃~0 ∈V s.t.~v+~0=~v∀v ∈V
• ∃−~v ∈V s.t.~v+ (−~v)=~0
• 1 ·~v = v
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• (a+b) ·v = a ·v+b ·v
• c · (v+w)= c ·v+ cẇ
• (ab) ·v = a · (b ·v)

Here are some exercises:

Example 7.10. Prove that 0 is unique.

Proof. For the sake of contradiction, assume that there exist more then one zero, let’s name two of them
01,02, such that v+0n = v∀v ∈V .
Note that for this to be true, we need to have 01 6= 02.

v = v
v+01 = v = v = v+02

v+01 = v+02

01 = 02

And we have a contradiction!
Thus, our initial assumption is false and hence, only one unique 0 exists.

Example 7.11. Prove that the additive inverse of a v ∈V is unique.

Proof. For the sake of contradiction, assume that for some v ∈ V we have more than one additive inverse.
Let two of these additive inverses be u and w. Note that this implies u 6= w.

0= 0

v+u = 0= 0= v+w
v+u = v+w

u = w

And we have a contradiction!
Thus, our initial assumption must have been false. Thus, a v ∈V has one, unique additive inverse.

Example 7.12. Prove that 0v = 0∀v ∈V

Proof.

0v
= (0+0)v
= 0v+0v

=⇒ 0v = 0v+0v
0v+ (−0v)= 0v+0v+ (−0v)

0= 0v

Example 7.13. Prove that −v = (−1)v

(−1)v = (−1)v
(−1)v+1v = (−1)v+1v
(−1+1)v = (−1)v+v

0v = (−1)v+v
0= (−1)v+v

−v = (−1)v

Algebra I



8 27 AUGUST, 2024 14

7.4 Subspace
Definition 7.14. A subpspace W of V is a subset that is closed under the same + and · as V .
w1,w2 ∈W =⇒ w1 +w2 ∈W c ∈R,w ∈W =⇒ c ·w ∈W W itself if a vector space under + and ·.

We will now look at some sample vector spaces and subspace.

7.4.1 This is a obvious, but

For Rn is the only family of examples of vector spaces. Subspaces of Rn always includes {0} and Rn.

7.4.2 The Cartesian plane

For R2, subspaces include 0,R2. Another one is for some vector ~w, the space defined by r~w where r ∈R.
We claim these are the only subspaces. That is if a subspace S ⊆R2 is such that v,w ∈ S and v 6= kw where
k ∈R, then S =R2.

Example 7.15. Prove the above.

Proof. TBD

Example 7.16. Find all subspaces of Rn

Proof. TBD

Example 7.17. Prove that the image of f is a subspace of Rn.

Proof. TBD

Example 7.18. Prove that the kernel of f is a subspace of Rn.

Proof. TBD

8 27 August, 2024

8.1 Recall
A was an r× c matrix which gave us a function of sets fA :Rc →Rr or x → Ax where x is a column vector.
Two associated subspaces are ker A which is also the null space of A and Im(A) which is basically the
range of A.
If b1,b2 ∈ Im(A) implies Ax1 = b1 and Ax2 = b2, which means Ax1 + Ax2 = A(x1 + x2) ∈ Im(A).
If b ∈ Im(A), c ∈R which implies cb = cAx = A(cx) ∈ Im(A).

8.2 Linear Combinations
Definition 8.1. In any vector space V ,
let S = {v1,v2, . . . ,vn} be a (multi) set 5 of vectors.
A linear combination of v1,v2, . . . ,vn is any vector of the form x1v1 + x2v2 +·· ·+ xnvn where xi ∈R.

Definition 8.2. Span of v1,v2, . . . ,vn is the set of all linear combinations of v1,v2, . . . ,vn. We can also write
this as

n∑
i=1

civi | ci ∈R

Note that the span is the subspaces of V where V is the vector space from which the vectors defining
the span are drawn.

Example 8.3. Prove that if a subspace W ⊂V contains S then W contains span of S.
5This is a set, but for the sake of argument...
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Proof. As W is a subspace, for vi,v j ∈W , civi + c jv j ∈W where ci, c j ∈ F where F is the field on which W is
defined.
If a set of vectors S = {v1,v2, . . . ,vn} is contained in W , it is trivial by above that

n∑
i=1

civi ∈W

for ci ∈ F.
We remmeber that the definition of span is

∑n
i=1 civi whrer ci ∈ F where F is the field on which the vector

space which vi belong to.
Thus,if a subspace W ⊂V contains S then W contains span of S.
And we are done!

Example 8.4. For a matrix A, range of fA which is equal to Im(A) is also equal to the span of column
vectors of A.

Proof. Let A = [
A1 A2 . . . Ac

]
where A i are the column vectors.

Ax = [
A1 A2 . . . Ac

]


x1
x2
...

xn

= A1x1 + A2x2 +·· ·+ Anxn

which is a linear combination of A1, A2, . . . , An and as xi ∈ R, we get the range of fA to be equal to column
vectors of A.

We also need to note that fA being surjective ⇐⇒ Span of column vectors of A = Rr or "columns of A
span Rr".
In the same vein, fA is injective ⇐⇒ Ax = 0 =⇒ x = 0 ⇐⇒ x1 A1 +·· ·+ xc Ac =~0 =⇒ ∀i, xi = 0.

8.3 Linear Independence
Definition 8.5. v1, . . . ,vn ∈Rr are said to be linearly independent, if

n∑
i=1

xivi = 0 =⇒ ∀i, xi = 0

Definition 8.6. If we can find xi not all equal to 0 such that
∑n

i=1 xivi = 0, the system v1, . . . ,vn is called
linearly dependent.

We can make a theorem here:

Theorem 8.7. If v1,v2, . . . ,vn are linearly dependent ⇐⇒ One of v1,v2, . . . ,vn can be written as a linear
combination of others.

Proof. We first prove the =⇒ part. FTSOC, let none of v1,v2, . . . ,vn be linear combination of others.

x1v1 + x2v2 + . . . xnvn = 0

We have some xi 6= 0 as the system is linearly dependent. Thus, we can write the above as:

xivi =−(x1v1 + x2v2 +·· ·+ xhvh + x jh j + . . . xnvn

vi =−
(

x1

xi
v1 +·· ·+ xn

xi
vn

)
The last step works as xi is non zero.
We now proves the ⇐= part. Let vn = x1v1 +·· ·+ xi +vi.
Then x1v1 +·· ·+ xi +vi −vn = 0.
And as both the directions work, Thus, If v1,v2, . . . ,vn are linearly dependent ⇐⇒ One of v1,v2, . . . ,vn can
be written as a linear combination of others.
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8.4 Polynomials as vector spaces
We can say all real polynomials with degree ≤ n is a vecttor space in Rn. The zero polynomial is the 0
element. The degree of the 0 polynomial is whatever we want it to be, based on the logic of the space we
are working with.
Also note that homogenous polynomials of degree d in k variables is eqavalaent to polynomials in K vari-
ables whose every term has the same degree d.

{ax2 +bxy+ cy2 | a,b, c ∈R}⊂subspace {All polynomials in x and y}

Example 8.8. Polynomials of degree ≤ n is the span of {1, x, x2, . . . , xn}.

This is clearly tautological.

9 29 August, 2024

9.1 Recap

Vector space of polynomials of degree ≤ n is the subspace of {1, x, x2, . . . , xn}.
Ah, a much shorter recap this time!

9.2 Some trivial facts about linear independence

A trivial fact to note is that any vectors containing~0 is linearly dependent as 0~v1 +0~v2 +·· · = 0.
Another trivial fact is any single non-zero vector is linearly independent. That is cv̇ =~0 and v 6= 0, =⇒ c =
0.
An even more trivial fact is that any multiset in which a vector repeats is linearlt dependent. This is
true as if v1 = v2 = v and S = {v1,v2, . . . } but v1 − v2 =~0 is a linear combiniation equalling zero where all
coefficients are not zero!
This is similer to a rather trivial fact that {v1 6=λv2} is linearly independent. v1 =λv2 is linearly dependent
as v1 −λv2 =~0.

9.3 Some trivial facts about span
It is trivial that if V =Span(S) then any set S′ ⊃ S also spans V .
Another trivial fact is that if V : {v1,v2, . . . } is linearly independent then some v ⊂ V is also linearly inde-
pendent.

9.4 A lemma!
Lemma 9.1. Any set S ∈Rn whose span equals Rn must be of size at least n.

Proof. Let S = {vi}k
i=1.

vi =


a1
a2
...

an


then consider the matrix

An×k = [
v1 v2 . . . vk

]
From the hypotheseis, we know that fA is surjective. This implies that r ≤ c or in this case n ≤ k, which
implies that the size of matrix must be atleast n.
And we are done!

Lemma 9.2. Any linearly independent V = {v1,v2 . . . } on Rn must have size less than equal to n.
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Proof. This is rather elementry to prove. FTSOC, let there be m > n linearly independent vectors.
Let’s choose to write some n+1 of these vectors as a matrix of the form[

v1 v2 . . . vn | vn+1
]

Notice that on performing row reduction on this matrix, using the fact v1,v2, . . . ,vn are linearly indepen-
dent, we will have 

1 0 . . . 0 | vn+1,1
0 1 . . . 0 | vn+1,2
...

...
...

... | ...
0 0 . . . 1 | vn+1,n


This means vn+1,1v1 +vn+1,2v2 +·· ·+vn+1,nvn = vn+1.
This contradicts the fact v1,v2, . . . ,vn+1 are linearly independent.
Thus, our initial assumption must be false.
Thus, Any linearly independent V = {v1,v2 . . . } on Rn must have size less than equal to n.
And we are done!

9.5 Basis
Definition 9.3. A basis of a vector space V is a linearly independent set that spans V

Example 9.4.

e1 =



0
...
0
1
0
...
0


where 1 is in the ith position.
We claim that {e1, e2 . . . , en} is a basi for Rn.

Proof. Spans? 
c1
c2
...

cn

= c1e1 + c2e2 +·· ·+ cnen

Linearly Independent? ∑
ci e i =~0 =⇒ ∀i, ci 6= 0

Theorem 9.5. Any basis of Rn must contain exactly n elements. That is "dimension of Rn" is n.

9.6 Other bases for Rn

1. R1 : Any non-zero element is a basis.
2. R2: {u,v} where u,v are non-zero vectors not lying on the same line through the origin.
3. R3: {u,v,w} where u,v,w non zero vector not lying on a plane through the origin.
4. Basis for a polynomial of degree ≤ n is

{1, x, x2, . . . , xn}

c0 + c1x+ c2x2 +·· ·+ cnxn ≡ 0 =⇒ ∀ci = 0 but we can also write this as {1, (x−1), (x−1)2, . . . , (x−1)n}.
Also note that polynomials of degree ≤ n is a vector space of Rn+1 as the constant term also accounts for a
dimension.
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9.7 A question
Example 9.6. Does a general vector space V have a basis?

Proof. Strategy A Start with a empty set and keep adding vectors till they span.

Lemma 9.7. Suppose S ⊂ V , S is linearly independent and u is such that u ∉ Span(S) then S∪ {u} is also
linearly independent.

Proof. ∑
vi∈S

civi +λu = 0

should imply ci,λ= 0
If λ= 0, then

∑
vi∈S civi = 0 =⇒ ci = 0

If λ 6= 0, then
u = ∑

vi∈S

(−ci

λ
vi

)
which is absurd as u couldn’t be written as a linear combination V = {v1,v2, . . . }.

Problem: How do we know that this terminates?
Strategy B Start with a spanning set and we remove elements till it is linearly independent.

Lemma 9.8. Suppose S ⊂V . Suppose v ∈ S and v ∈Span(S\{v}) such that Span(S)=Span(S\{v})

Problem: We are not sure whether this terminates.

Definition 9.9. V is called a finite dimensional vector space if and only if it has the finite spanning set.

Theorem 9.10. Every finite dimensional vector space has a basis.

Theorem 9.11. Every basis of a finite dimensional vector space has the same cardinality.

10 10 September, 2024

10.1 Recall
Definition 10.1. V is called a finite dimension vector space(fdvsp) if it has a finite spanning set.

Theorem 10.2. Every fdsvp has a basis.

This is trivial.

Theorem 10.3. Any two bases have the same cardinality.

Example 10.4. For Rn, any basis has n vectors.

10.2 The Abstract proof of this
Lemma 10.5 (Steinz Exchange Lemma). Suppose v ∈ S ⊂ V and u ∈ V s.t.u ∈ Span(S). Suppose u ∉
Span(S\{v}), then v ∈Span(S\{v}∪ {u}).

Proof.
S = {v,v2, . . . ,vk}

u = av+
k∑

i=2
aivi

The above holds since u ∈Span(S).
a 6= 0 because u ∉Span(S\{v}).

=⇒
(

1
a

)
u−

k∑
i=2

(ai

a

)
vi = v
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Proposition 10.6. If I is a finite linearly independent set and S is any spanning set, then |I| ≤ |S|
Proof.

I = {u1,u2 . . .um}

S = {v1,v2 . . .vn}

To Show: m ≤ n and after rearranging og vi if necessary, {u1,u2, . . . ,um,vm+1, . . . ,vn} spans V .

Proof. Inducting on m.
(B) for m = 0, holds as there are no u′

is and S spans V .
(S) Assume that the reuslt holds for |I| = m−1, in particuler m−1≤ n.

S′ = {u1, . . . ,um−1,vm,vm+1 . . .vn}

spans V .

um =
m−1∑
i=1

ciui +
n∑

j=m
d jv j

Observe d j 6= 0, say dm after possible rearranging te v′js. iN particuler, m ≤ n.
Further, um ∈Span

(
S′) ,u, ∉Span

(
S′\{vm}

)
.

Exchange vm by um and we are done!

Thus, the proposition implies for fdvsp V , cardinality of any two bases is the same.

10.3 Stratergy to Build a Basis
Stratergy A is we start with a linearly independent set and add vectors till it is spanning.

Proof.
I0 = I,S = spanning set

I1 =
if u1 ∉Span(I) , then I1 = I0 ∪ {u1}.
of ui ∈Span(I) , then I1 = I0. Observe : I1 is linearly independent.
Form I j iterativly. Each I j is linearly independent and Span(Ik)=V .
Thus, Ik is a basis.

Stratergy B is we start with a spanning set and delete vectors till it is linearly independent.

Proof. TBD

10.4 Another proof using isomorphism
Observe: A basis defines a coordinare system on fdvsp V .
How? Any u ∈V can be written uniquey as a linear combination of basis vectors.

u = ∑
vi∈B

civi

where B = {v1,v2, . . . ,vn} is some given basis.
The uniquness is simply proved by subtracting and is not included here for brevity.
If we fix the order in which B = {v1,v2 . . . ,vn} is written, then (c1, c2, . . . , cn) is the corrdinate vector in Rn of
u with respect to the ordered basis B.

Definition 10.7. Suppose V and W are vector spaces. A function f : V →W is called an isomorphism if:
(0) f is a bijection.
(1) f (v1 +v2)= f (v1)+ f (v2) and f (λv1)=λ f (v1)∀λ ∈R,∀v1,v2,v ∈V .
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Remark 10.8. If f is an isomorphism, so is f −1.

f −1(w1 +w2)=? f −1(w1)+ f −1(w2)

=⇒ w1 = f (v1) for some unique v1 ∈V .
=⇒ w2 = f (v2) for some unique v2 ∈V .
∴w1 +w2 = f (v1)+ f (v2)= f (v1 +v2)
∴ f −1(w1 +w2)= v1 +v2 = f −1(w1)+ f −1(w2).
Similer for scaler multiplication.

Remark 10.9. If there is an isomorphism from V →W , we say V and W are isomorphic vector spaces.

Remark 10.10. If f :Rc →Rr given by x → Ax for some some r×c matrix A then f satisfies (1) by defination.

f is an isomorphism ⇐⇒ RREF(A)= Id so r = c.
⇐⇒ A in invertible.
If f : v → w is an isomorphsim then any true assertion in V about this vector space structure remains true
after transport by f and vice versa for transport by f −1.

Example 10.11. S is a basis of V ⇐⇒ f (S) is a basis of W .

Proof of theorem (2). V fdvsp.
Let {v1,v2, . . . ,vn} be a basis.
∃ an isomorphism f :Rn →V . 

c1
c2
...

cn

→∑
civi

If {u1, . . . ,uk} is another basis.
Then ∃ isomorphism g :Rk →V . d1

...
dn

→∑
d jv j

g−1 ◦ f :Rn →Rk is an isomorphism.
=⇒ n = k

11 11 September, 2024

11.1 Say hi to Isomorphisms!

(i) f : V →Wisom =⇒ f −1 : W →V . f is an isomorphism V ∼=W or "V is isomorphic to W".
(ii) f : V → Wisom, g : W → Uisom =⇒ f ◦ f : V → U is an isomorphism. We can write this also as
V ∼=W ,W ∼=U =⇒ V ∼=U .
(iii) If S is a basis for V then f (S) is a basis for W .
(iv) If (v1,v2, . . . ,vn is an ordered basis then we get f :Rn →V is an isomorphism.

f




c1
c2
...

cn


= c1v1 + c2v2 +·· ·+ cnvn

Theorem 11.1 (Invarience of Dimension). Let V be a fdvsp. Then, any two basis of V have the same (necce-
sarily finite) cardinality. This is called the dimension of V (over R). In this case, V ∼=Rn, if |basis| = n.
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11.1.1 Corollaries

(i) If S is any spanning set with |S| = n, the in fact, S is linear independent and hence a basis.
(ii) If I is any linear independent set with |I|−n, then in fact, I is spanning set, and hence, a basis.
(iii) If W ⊆V is a subspace, then dimW ≤ dimV .

Proof. Take a basis for W . W is finite dimensional because spanning set for V will give a spanning set for
W .
B stays linearly independent over V . Then, by a previous proposition,

limW = |B| ≤ |basis for V |− limV

Remark 11.2. For vector spaces that are not fdvsp. Existence of a basis can be shown using stratergy A
and Zorn’s Lemma/Axiom of choice.

Remark 11.3. Uniqueness of cardinalities also holds.

11.2 How to calculate with Basis

Example 11.4. Does
[
1
2

]
,
[
3
8

]
form a basis of R2

Solution. Check linear indepndence, or try to create


1
0
...
0

 ,


0
1
0
...
0

 , . . . ,


0
...
0
1

.

Example 11.5. Prove that {1, x, x2} is a basis of polynomials of degree ≤ 2. What about {1,1+ x,1+ x+ x2}?

Example 11.6. A r× c matrix, fA :Rc−>Rr or x → Ax.
How to find basis of:
(i) ker fA = nul(A)
(ii) Im( f )A =Span(column of A)

12 12 September, 2024

12.1 Recall

R =


0 1 P 0 Q 0
0 0 0 1 r 0
0 0 0 0 0 1
0 0 0 0 0 0




x1
x2
x3
x4
x5
x6

=


0
0
0
0


RX = 0

has the general solution

X1



1
0
0
0
0
0

+ X3



1
−p
1
0
0
0

+ X5



0
−q
0
−r
1
0


That is

nul(A)=Span(V1,V3,V5)
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and throws corresponding to the indecies 1,3,5 imply that they are linearly independent.

∵A basis for Nul(A)= {v1,v3,v5}

Conclusion: Dimension of null space is equal to number of free variables.

12.2 Basis of Im(A)= col(A)

Stratergy (i) Make rows into columns.

Definition 12.1. The transpose of N a p× q matrix, M t or transpose of M is a q× p matrix givent by
(M t)i j := M ji.

12.3 Some easy properties of transpose
Theorem 12.2.

(M t)t = M

(M+N)t = M t +N t

(cM)t = cM t

For A a p× q matrix and B a q× r matrix. Notice, At is q× p and Bt is r× q

Theorem 12.3.
(AB)t = Bt At

Proof. TBD

Theorem 12.4.
(AB)−1 = B−1 A−1

for square matrices.

Also note A → (At)−1 is a intresting function to think about

12.4 To column operations
Notice,

Ax = B ≡ xt At = Bt

where x and B are row vectors.
We can solve such equations using column operations.
Doing a column operation is same as multiplying on the right by an elementry matrix.

A → AE

Such matrices can be converted to reduced column echelon form, which is just transposed form of RREF.

12.5 Actually the basis for Im( fA)=Col(A)=Span(Columns of A)

Note that Col(A)⊆Rr.
Similerly, what is Row(A) :=Span(Rows of A).
Also note, Row(A)⊆Rc.
Case 1 A is an RREF.
The pivot columns are linearly independent another columns are in their span.
In this case: A basis of Col(A)= {Pivot columns of A}.
General Case: Row operations change the column space of A.
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Example 12.5. [p
2
π

]
Row operations−−−−−−−−−−→

[
1
0

]
But notice that the span of both the forms is not the same.

Insight: Find linear relations among column vectors of A, so that we can drop "unnecessary" columns.
This is same as finding non-trivial solution to

Ax = 0

⇐⇒ Finding non-trivail solutions to
RREF(A)x = 0

Any set of columns of RREF(A) is linearly dependent/independent ⇐⇒ corresponding set of columns of A
is linearly dependent or independent.
∵ A basis for Col(A)= {Columns of A corresponding to the pivot columns of RREF(A)}.

Remark 12.6. Nullity of A = Dimension of null space = Number of free variables
(Column)6 rank of A = Dimensin of Col(A)= Number of pivot variables.

Theorem 12.7 (Rank Nullity Theorem). (Column) Rank of A + Nullity of A = Number of columns of A

We can also write it as

Theorem 12.8.
dimIm( fA)+dimker fA = dimRc

where Rc is the domain of fA .

12.6 Basis for Row(A)= span of row vectors of A

Case 1: If A is RREF, then the non-zero rows form a basis as thet are linearly independent.

General Case: Arbitry Matrix A
Row Operations−−−−−−−−−−−→ A′, then Rows of A′ are linear combinations of rows of A

and vice versea.
A basis of Row(A)= {Nonzero row vectors of RREF(A)}
This implies

dimrowA =Number of pivots in RREF(A)= dimcolA

Thus, column rank is equal to row rank.7

Theorem 12.9. Rank of A = Column rank of A = Row rank of A

12.7 Back to abstract vector spaces

Example 12.10. Set of all p× q matrices is a vector space8 under entry-wise addition and scalar multipli-
cation.

Example 12.11. Show that V is isomorphic to Rpq

Proof. TBD

Example 12.12. If X is any set, W = { f : X → R} is a vector space under pointwise addition and scaler
multiplication.

Example 12.13. If X is finite, then what is dimW?

Proof. TBD
6Eventually, we will find column rank is equal to row rank
7Told ya!
8As we can also multiply matrices, we can upgrade this from a vector space to an algebra. But we study that in algebra III
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13 17 September, 2024

13.1 Recall
An r× c matrix A fA :Rc →Rr fA(x)= Ax
ker( fA)⊂Rc

Im(() fA)⊂Rr

dim(ker fA)= number of non-pivot colums in RREF(A).
dim(Im( f )A)= number of pivot colums in RREF(A).
We also proved dim(ker fA)+dim(Im( f )A)= dim(domain of fA
The former is also called the nullity and the latter nullity, providing the name, Rank-Nullity Theorem.

13.2 Linear Maps
Definition 13.1. A map T : V →W is called "linear" if it satisfies (1) T(V1 +V2)= TV1 +TV2∀v1,V2 ∈V
(2) T(cV )= cT(V )∀c ∈R,∀v ∈V .

The goal:
dimkerT +dimIm(T)= dimV

Here kernal refers to a subset of the comdomain of T such that {x|T(X )= 0}. Image is just the range.

Remark 13.2. (I) A linear map T is a map that preserves the vector space structure.
(II) Adding first in V and then applying T is the same as applying T first and then adding in W .
Also note

T(C1v1 +C2v2)

= T(C1v1)+T(C2v2)

= C1T(v1)+C2T(v2) =⇒ T

(
n∑

i=1
Civi

)
=

n∑
i=1

CiT(vi)

(III) For a linear map T : V →W , (i) T(~0v)= T(0 · ~0v)= 0T(~0v)= ~0W
(ii) kerT = {v ∈V |T(v)= 0} is a subspace of V .
(iii) Im(T)= {T(v)|v ∈V } is a subspace of W .
(iv) If S ∈V spans V , then T(S) spans T(V )≡ Im(T)
(v) If S ∈V is linearly dependent then T(S) ∈ T(V ) is linearly dependent.

13.3 Some examples
Example 13.3. For r× c matrix A, fA :Rc →Rr or x → Ax is linear.

Here is a bit more involved example

Example 13.4. V = set of all diffrentiable functions froms R→R.
W = set of all functions from R→R.
Define D : V →W or f → f ′.
This is clearlt a linear map as: (i) (f+g)’ = f’ + g’
(ii) (cf)’ = cf’
(iii) D = c where c is constent.

Example 13.5. Consider the same map on the subspace V of polynomials of degree ≤ n.
Consider the same map on the subspace V of polynomials of degree ≤ n

dim(kerD)+dim(ImD)= dim(DomainD)
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Pn Pn−1
D

dim= n+1 dim= n

dim of kerD = 1

9

Example 13.6. V = set of n×n matrices.
W =R
T : V →W such that A → trace(A).
Check that the dimension,formula holds and find a basis for the kernel.

Solution. TBD

13.4 Rank-Nullity abstracted
Theorem 13.7. For a linear map T : V →W where V is finite dimensional vector space, then we have:

dimIm(T)+dimkerT = dimV

Proof. We will show: (Basis of kerT) ∪ (A disjoint set of size dimIm(T)) = (A basis of V ). (1) Take a basis
k1,k2, . . . ,kt of kerT.
(2) Extend to get a basis k1,k2, . . . ,k2,v1, . . . ,vr of V .
dimkerT = t, dimV = t+ r,
To show: dimIm(T)= r.
Guess T(v1),T(v2) . . .T(vr) is a basis of Im(T).
(i) The vectors span Im(T)
Since {k1, . . . ,kt,v1, . . . ,vr} is a basis of V .
{T(ki)} and {T(v j)} span T(V )= Im(T).
This is true as {0} and {T(v j)} span T(V )= Im(T).
(ii) T(v1), . . . ,T(vr) are linearly independent.

r∑
i=1

CiT(vi)= 0

=⇒ T

(
r∑

i=1
Civi

)
= 0

As
∑r

i=1 Civi ∈ kerT,
r∑

i=1
Civi =

t∑
j=1

a jk j

r∑
i=1

Civi −
t∑

j=1
a jk j = 0

Since {k j}t
j=1 and {vi}r

i=1 form a basis. This implies all ci and all a j = 0. In partuculer, T(v1),T(v2), . . . ,T(vn)
are linearly independent.

14 19 September, 2024

Last class before midterm. We will have a quiz on 24th and have a preparatory break on 27th.

9Sir told us that the ability to let differentiation be linear map is very useful in number theory. He didn’t tell us why.
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14.1 Recall
T : V →W is linear map then dimkerT +dimIm(T)= dimV .
Recipe Take a basis of kerT ⊂V .
Extend to a basis of V then corresponding images under T will give a basis for Im(T).

14.2 The matrix-linear transform bijection
Theorem 14.1. Any linear map T from Rp →Rq is of the form fA(X ) for some A a q× p matrix.

Proof. Take

x =


c1
c2
...

cp

= c1


1
0
...
0

+ c2


0
1
...
0

+·· ·+ cp


0
0
...
1

= c1e1 + c2e2 +·· ·+ cp ep

∴T

(
p∑

i=1
ci e i

)
=

p∑
i=1

ciT(e i)

Let

T(e i)= ui =


ui1
ui2

...
uiq



∴T




c1
c2
...

cp


= c1


u11
u21

...
uq1

+ c2


u12
u22

...
uq2

+·· ·+ cp


u1p
u2p

...
uqp

=


u11 u12 . . . u1p
u21 u22 . . . u2p

...
... . . .

...
uq1 uq2 . . . uqp



The matrix A corresponding to T (ie A such that T = fA) is equal to matrix whose columns are
T(e1),T(e2), . . . ,T(ep) in that order.

14.3 Some examples
Observe the following maps are linear for geometric reasons. Find there matrices.

Example 14.2.
R2 →R2,Rotation by angle θ

Solution. [
cosθ −sinθ
sinθ cosθ

]

Example 14.3.
R3 →R3,Rotation by angle θ about one of the axis

Solution.

Rx =
1 0 0

0 cosθ −sinθ
0 sinθ cosθ



Ry =
 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ


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Rz =
cosθ −sinθ 0

sinθ cosθ 0
0 0 1



Example 14.4.
R2 →R2,Reflection about the liney= x

Solution. [
0 1
1 0

]

Example 14.5.
R3 →R3,Reflection in the XY plane

Solution. 1 0 0
0 1 0
0 0 −1



Example 14.6.
R2 →R2,Rotation by angle θ followed by reflection in the line y= x

Solution. [
sinθ cosθ
cosθ −sinθ

]

Remark 14.7. On the choice of basis, we may have many different, isomorphic matrices of linear transform.
Choose one basis and stick with it!

14.4 Recall again,
Matrix of linear map T : V →W for any finite dimensional V ,W by picking a basis for V and a basis for W .
Suppose v1,v2 . . .vn is a list of vectors in a vector space V .
Then, we can define a map

ψ :Rn →V
c1
c2
...

cn

→ c1v1 + c2v2 +·· ·+ cnvn

Observe: (i) ψ is linear.
(ii) ψ is onto ⇐⇒ v1, . . . ,vn are linearily independen.
(iii) ψ is injective ⇐⇒ v1, . . . ,vn are linearly independent.
(iv) ψ is an isomorphism ⇐⇒ v1, . . . ,vn is a basis.

Take a ordered basis B = (v1,v2, . . . ,vn) for n−dimensional vector space V .
Then Inverse of ψ gives coordinates of any v ∈V with respect to given basis B.
That is, if we weite v =∑n

i=1 civi, uniquely. The the coordinate vector of v with respect to B is
c1
c2
...

cn

=ψ−1(v)

Let T : V →W be linear.
Let v1,v2, . . . ,vp be an ordered basis for V .
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Let w1,w2, . . . ,wq be an ordered basis for V .

V →W

ψR→Rφ

Rp φ−1◦T◦ψ−−−−−−→Rq

v → T(v)
c1
c2
...

cp

→


b1
b2
...

bp


We must have a matrix A s.t.

A




c1
c2
...

cp

=


b1
b2
...

bq




The matrix A has the property, its columns are images of the standard basis vectors under the linear map
φ−1 ◦T ◦ψ.
Answer: Matrix of T with respect to given bases of V and W is obtained as its columns are coordinate
vectors of T(given basis of V ) with respect to given basis of W .

Theorem 14.8 (Change of Basis Formula). (v1,v2, . . . ,vp) and (v′1,v′2, . . . ,v′p) are two ordered basis of V .
(w1,w2, . . . ,wq) and (w′

1,w′
2, . . . ,w′

q) are two ordered basis of W .
Then if A is the matrix of T : V →W for the given bases (v1, . . . ,vp) and (w1, . . . ,wq).
And we can change bases from (v1, . . . ,vp) to (v′1, . . . ,v′p)

Rp Rp

(v1, . . . ,vp) (v′1, . . . ,v′p)

fQ

and similarly

Rp Rp

(w1, . . . ,wp) (w′
1, . . . ,w′

p)

fP

The the matrix of T : V →W for the other given bases (v′1, . . . ,v′p) and (w′
1, . . . ,w′

q) is

P AQ−1

15 8 September 2024

15.1 Recall
T : V →W is a linear map between bases βV →βW .
Matrix of T in given bases is obtained its columns are coordinate vectors of T(βv) with respect to the basis
βW .
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15.2 Change of Basis
V space of dim N, old basis βV = (v1, . . . ,vn) and new basis β′

V = (w1, . . . ,wn).

Wj = p1 j~v1 + p2 j~v2 +·· ·+ p1m~vn

= [
~V1 ~V2 . . . ~Vn

]


p1 j
p2 j
...

pn j


P will be an invertible matrix as going from Vk −→

P
Wk −−→

P−1
Vk as vk −→

id
vk =⇒ PP=1 = id.

Any invertible matrix can be taught of as a change of basis matrix.

Mβv,βw (T)=Q−1 AP

15.3 Composition of lnear maps in terms of notation.
V −→

T
W −→

S
U

dimV ,W ,R = p, q, r

BasisV ,W ,R =βV ,βW ,βU

Mβv,βw (S ◦T)= Mβv,βw S ◦Mβv,βw T

Proof. Take a look at (2,3) entry of Mβv,βw (S ◦T).
= Coeffciecient of u2 in (S ◦T)v3
Now, (S ◦T)v3 = S(

∑q
j=1 t j3w j).

If matrix of T = (ti j)
If matrix of S = (si j)

(S ◦T)v3 =
q∑

j=1
t j3S(w j)=

q∑
j=1

t j3

r∑
i=1

si jui

Coeff of u2 ↔ i = 2
Coeff of u2 =∑q

j=1 S2 j t j3 = (2,3) entry of matrix product M(S) and M(T).

15.4 "Good basis for a linear map
T : V →W

where rank pf T = r.
Take a absis of ker T : k1, . . .kp−r.
Extend to get a basis pf V :

k1,k2 . . .kp−n,v1, . . .vn

We know : T(v1) . . .T(vn) form a basis of T in W .
Extend this to a bsis of W .

T(v1),T(v2), . . . ,w1, . . . ,wq−r

Thus, matrix of T in βV ,βW 

0 0 . . . 0 | 1 0 . . . 0
0 0 . . . 0 | 0 1 . . . 0
...

...
. . .

... | ...
. . .

...
0 0 . . . 0 | 0 0 . . . 1
0 0 . . . 0 | − − − −
0 0 . . . 0 | 0 0 . . . 0
...

...
...

... | ...
...

...
...

0 0 . . . 0 | 0 0 . . . 0


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15.5 Direct Sums
Definition 15.1. External diect sum of W1,W2 is W1 ⊕W2

Let W1 ⊕W2 =W1 ×W2.
Addition: Slotwise

(w1,w2)+ (w′
1w′

2)= (w1 +w′
1,w2 +w′

2)

Scaler Multiplication : Slotwise
c(w1,w2)= (cw1, cw2)

<To be filled>

16 MIDSEM!!!

17 9 October 2024

17.1 Recall
External direct sum.
W1,W2 are vector spaces.
W1 ⊕W2, as a set it is W1 ×W2.

17.1.1 Addition

(w1,w2)+ (w′
1,w′

2)= (w1 +w′
1 +w2 +w′

2)

17.1.2 Scaler Multiplication

c(̇w1,w2)= (cw1, cw2) <Include the diagram from last class but with hooked arrows>

17.2 A lemma
Lemma 17.1.

dim(w1 ⊕w2)= dimw1 +dimw2

Proof. If {v1}

<God fucking knows how much is to be completed as the CMOS just had to crash.>
Analogue: A, B are finite sets.

|A∪B| = |A|+ |B|− |A∩B|
Example 17.2. Write analogous form of

W1 +W2 +·· ·+Wk

Artin’s Proof. Take a bssis of W1 ∩W2. Let’s call it α1,α2, . . . ,αk.
(i) Extend to a bsis of W1 by attaching β1,β2, . . . ,βl .
(ii) Extend to a basis of W2 by attaching γ1,γ2, . . . ,γm.
Then claimed formula is (k+ l)+(k+m)= dim(W1+W2)+k To Show: dim(W1+W2)= k+ l+m. - α′s,β′s,γ′s
form a basis for W1 +W2

In general,
S : W1 ⊕W2 ⊕·· ·⊕Wl →W1 +W2 +·· ·+Wn ⊆V

(w1,w2, . . . ,wk)→
k∑

i=1
wi

S is surhjective if and oly if W1, . . . ,Wk span V . S is injective if and only if W1, . . . ,Wk is linearly indepen-
dent.

Remark 17.3. k = 2, W1,W2 being linearly independent if and only if W1 ∩W2 = {0}
k = 3, w1,w2,w3 are linearly independent implies w1 ∩w2 = {0},w2 ∩w3 = {0},w3 ∩w1 = {0}.
Note the converse is not true!
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17.3 DETERMINANTS!
Determinant is a function.

det : {n×nsquare matrices}→R

10 satisfying
1. Doing a row replacement Ri → Ri +λR j does not change the determinant.

2. Scaling a row by scaler multiple c the determinenant by c.

3. Swaping two rows multiples the determineant by −1.

4. Determinant of In = 1

17.3.1 Motivation:

Geometric The area of a parallelogon spanned by vectors (a,b) and (c,d) is its determinent.
The area of a parallelopipete spanned by vectors (a,b, c), (d, e, f ) and (g,h, i) is its determinent.
If we show these properties hold for all such vectors, then we will show these properties hold as two differ-
ent volume functions don’t give two different volumes.

1. Doing a row replacement Ri → Ri +λR j does not change the determinant,

v1,v2, . . . ,vn are vectors in Rn

We can imagine all v2, . . . ,vn are compressed into one U2. Then volume of parallelogram U2,V1 is the
determinent.
Switching V2 →V2 +λv1 doesn’t change the height and the base is still V1. So the area doesn’t change.

2. Scaling a sice will scale the volume by the same factor.

3. Swapping wo rows does not change volume.

4. Rows of identity matric are standard basis vectors and hence have area 1.

17.4 Computing determinants by Row Reduction
A square matrix A can be row reduced to REF(A)= B,
Then

det(A)= (−1)r (Product of diagonal entires of B
product of scaling factors

where r is the number of rows swapped.

18 10 October, 2024

18.1 Recipe of computing determinants by row reduction
Claim: A square matrix A can be row reduced to REF(A)= B,
Then

det(A)= (−1)r (Product of diagonal entires of B
product of scaling factors

where r is the number of rows swapped.
Notice: Any RREF is upward triangular ie RREF is of the form:

∗ ∗ . . . ∗
0 ∗ . . . ∗
...

...
...

...
0 0 . . . ∗


10In general, R is replaced by whatever field we are dealing with.
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basically, ai j = 0 if i > j.
To Prove: det(upper/lower triangular matrix=Product of diagonal entries.

Proposition 18.1. Let A be a n×n matrix.

1. If A has a zero row (or column), then let det A = 0.

2. If A is upper / lower triangle the det A is the product of its diagonal entries.

Proof. (1) Suppose A has a zero row.
Then R j →−R j ↔ A′ Then det A =−det A′ =−det A =⇒ det A = 0

(2) Case (i) If A is upper trianglular with one of the diagonal entries is 0, say aii.
a11 ∗∗∗
0a22 ∗∗

000∗
000a44

→


a11 ∗∗∗
0a22 ∗∗

0000
000a44


Using row-operation using a44, we now have a clear determinent 0 matrix by (1).
Case (ii) A upper triangular matric with all terms non-zero.[

a∗∗0b∗00c
]−−−−−−−−−−−−−−−−−→

Scale by a−1,b−1 and c−1

[
1∗∗01∗001

]−−−−−−−−−−→
Row recuctions

[
100010001

]
The last has a determinent 0 by defination. As we scaled by 1

a , 1
b and 1

c , we reverse the scaling to get the
determinent abc.

This is the fastest method of determinent finding in computer science and computer scientists get very
happy looking at it.11

18.2 Another characterization of determinants
det can be thought of as a function of the rows of a matrix.

det(~v1,~v2, . . . , ~vn)= det


v1
v2
...

vn


18.3 Multi-linearity property
Let i be a natural number between 1 and n and fix n−1 vectors ~v1,~v2, . . . , ~vi−1, ~vi+1, . . . , ~vn ∈Rn.
The the function Rn →R

Ti(~x)= f det(~v1,~v2, . . . , ~vi−1,~x, ~vi+1, . . . , ~vn)

where~x is weitten as a row on the RHS is linear map of the vector spaces and f : MR×R→R

18.4 Alternate defining properties
1. The determinant det(A) is multiplinear in the rows of A.

2. If A has two identical rows (or columns) then det(A)= 0

3. The determinant of Tn×n = 1,

Example 18.2. Show that the equivalence of ’defining propertines’ and the ’alternate defining properties’.

Proof. TBD
11According to prof. Aditya Karnataki. In reality, LU decomposition is beaten in practicality by Stressen’s algorithm and in theory

by the current bound of O(n2.376) algorithm exists based on the CoppersmithWinograd algorithm.

Algebra I



20 29 OCTOBER, 2024 33

Definition 18.3 (Multi-linear maps). Let V1, . . . ,Vk,W be vector spaces.
A fucntion f : V1×V2×·· ·×Vk →W is called multilinear if it is a linear in each of the argmenrs, when the
emaining arguments are fixed.

Example 18.4.
f (αv1 +v′1,v2, . . . ,vk)=α f (v1,v2, . . . ,vk)+ f (v′1,v2, . . . ,vk)

Example 18.5.
R×R→R

(a,b)→ ab

is multilinear with k = 2 or bilinear.

18.5 Co-Factor method of determinants
Let A be a n×n matrix.

Definition 18.6. The i, j minor is denoted as A i j is the (n−1)× (n−1) matrix obtained by deleting the ith

row and the jth column.

Definition 18.7. The (i, j)th cofactor is (−1)i+ j det(A i j)

19 I was not able to take notes as my laptop is weak and can’t
run Zoom and Overleaf at the same time.

20 29 October, 2024

20.1 Recall
Definition 20.1. Charteristic polynomial of a linear operator T : V →V is

pT (x)= det(xI − A)

=⇒ pT (x)= xn − (trA)xn−1 +·· ·+ (−1)n det A

Theorem 20.2.
det(xI − A)= det(xI −P AP−1)

where P is an invertible n×n matrix and all coefficients of chariteristic polynomial is independent of the
basis.

Proof.
det(xI −P AP−1)= det(P(xI − A)P−1)= det(P)det(xI − A)det(P−1)= det(xI − A)

Corollary: The eigenvalues of T are the roots of its characteristic polynomial similer matrices have
the same eigen values.
Corollary: Diagonal entries of a trianguler matric are its eigenvalues.

Example 20.3. Let K and W denote the kernel and image of an operator V → V . Show that the following
are equivalent.
• V = K ⊕W
• K ∩W = {0}
• K +W =V

Corollary: If dimV = n, then V has atmost n eiganvalues.
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20.2 Vector spaces over a field F

Definition 20.4. A field F is a set together with (+,0,−, ·, ., /, ()−1).

We will take F=C.

Proposition 20.5. If F =C and V 6= 0 then T : V →V , then T has at least one eiganvalue and hejce at one
eigan vector.

Note, over a genral field, we may not have any eigan value.

Example 20.6. Rθ or the rotation matrix by θ ∈ [0,2π).
p(x)= x2 − (2cosθ)x+1, does not have real roots for θ 6= 0,π.
But the operator C2 →C2 defined by Rθ has complext eigen values eiθ and e−iθ.

Proposition 20.7. Every complex n× n matrix A is similar to an upper triangle matrices that is there
exists an invertible matrix P (with complex entries) such that P AP−1 is upper triangular.

Proof. A has ateast one eigen vector say v1 with eigen value λ1.
Extend {v1} to a basis of V .
In this basis,

A′ =


λ ∗ . . . ∗
0 d1,1 . . . d1,n−1
...

... . . .
...

0 dn−1,1 . . . dn−1,n−1


By induction hypothesis on D which is clearly (n−1)× (n−1). This implies there exists a Q s.t.QDQ−1 is
upper triangular.

P ′ =
[
10 . . .00q11 . . . q1(n−1)

...
...
...
...0qn −1,1 . . . q(n−1), (n−1)

]
P ′ makes A′ upper triangular,
Similerly, P makes A upper trianguler.

Remark 20.8. If A is an n× n matrix with entries in a field F s.t. chearacteristic polunomidl of A is a
product of linear factors (with entries in R) s.t.P AP−1 is upper trianguler.

Proposition 20.9. An n×n matrix A is similer to a diagonal matrix if and only if there is a basis of Fn

that consts of eigen vectos.

Proof. T(v j)=λ jv j, j = 1,2, . . .n then the matrix of T for the basis (v j)n
j=1 is

λ10 . . .00
0λ2 . . .00

...
...
...
...
...

00 . . .0λn



Moral: We can represent a linear operator by a diagonal matrix provided it has "enough" eiganvectors.

Theorem 20.10. T : V →V over a field F.
If PT (x) has n disticit roots in F, then there is a basis for V wr twhich matrix of T is a diagonal.

20.3 WHat about repeated eigan values?
Example 20.11.

A =
[

41
−21

]
det(xI − A)= [

x−4−12x−1
]

= (x−4)(x−1)+2= x2 −5x+6= (x−2)(x−3)

As roots are 2,3, we get ker(A−2I)=Span(()1,−2)T and ker(A−3I)=Span(()1,−2)T
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Example 20.12. Try to diagonalize [
3 0
0 3

][
3 1
0 3

]
Both have repeared roots. But since B only has one eigenvector for the twice repeated eigan value 3,

we can’t have a basis or a diagonal form.

20.4 Geometric Multiplicity
dimker(A−λI)= dimension of λ eigenspace

20.5 Algebric multiplicity
Number of times x−λ appears as a factor of det(xI − A)

Theorem 20.13. Say {λi}r
i=1 are eiganvalues for A. Take F=C. We have

r∑
i=1

g i = n

where g i is the geometric multiplicity of λi if and only if A is diagonalizable.

Theorem 20.14. ai ≥ g i for each i where ai is the algebric multiplicity of λi.

Proof. Fix i.
Then λi =λ, g i = g and ai = a the take g many linearly independed eigenvectors associated with λ that is
the basis vectors for ker(A−λI).
Exted to a basis of V by chooseing some vg+1, . . . ,vn.

Example 20.15. See that weiting matrix of T in this baisis gives

det(xI − A)= (x−λ)3 g(x)

where g(x) is a polynomial.

Corollary: Since
∑

ai = n, from previous two theorems, A is a diagnoalizable if and only if ai = g i for
all i

21 5 November, 2024

21.1 Duel Spaces
12 Recall:13 V ,W vector spaces \F then homF(V ,W) = Set of all linear maps / homomorphisms of V into
W is a vector space over F with point-wise addition and scaler multiplication.

Lemma 21.1. dimFV = m,dimFW = n =⇒ dimF homF(V ,W)= mn

Proof. Let v1,v2, . . . ,vm and w1,w2, . . . ,wn be bases for V and W respectivly.
For a vector v ∈V , v =λ1v1 +λ2v2 +·· ·+λmvm.
We define Ti j : V →W such that

Ti j(vk)=
{

0 k 6= i
w j k = i

Claim: Ti j constitute a basis for homF(V ,W)

12Aw, we didn’t start this one with recap...
13And we are back!
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Proof. Let S ∈ homF(V ,W).

S(v1) ∈W =⇒ S(v1)=α11w1 +α12w2 +·· ·+α1nwn

S(v2) ∈W =⇒ S(v2)=α21w1 +α22w2 +·· ·+α2nwn

...

S(vi) ∈W =⇒ S(vi)=αi1w1 +αi2w2 +·· ·+αinwn

Define

S0 :=α11w1 +α12w2 +·· ·+α1nwn +α21w1 +α22w2 +·· ·+α2nwn +·· ·+ · · ·+αm1w1 +αm2w2 +·· ·+αmnwn

=⇒ S0(Vk)=α11T11(vk)+α12T12(vk)+·· ·+αmnTmn(vk)

=αk1w1 +·· ·+αknWn

= S(vk)∀1≤ k ≤ m

Thus, S0 and S agree on basis V . Thus, it is spanning
Suppose, ∃βi j s.t.

β11T11 +β12T12 +·· ·+βmnTmn = 0

=⇒ (β11T11 +β12T12 +·· ·+βmnTmn)(vi)= 0∀1≤ k ≤ m

βk1w1 +βk2w2 +·· ·+βknwn = 0

As w1,w2, . . . ,wn is a basis, βk1 =βk2 = ·· · =βkn = 0.
Thus, it is spanning.

Corollary: A basis for the space of n×m matrices is is given by matrices {Mi j} with 1 in the (i, j)th

entry and 0 elsewhere.
Cororollary: dimFhom(V ,F)= m if V is finite dimensional, V and homF(V ,F) are isomorphic to each other
becuse V ∼= FdimV ∼= homF(V ,F)

Remark 21.2. The isomorphism has many shortcomings. There is no ’nice’, ’universal’ construction al-
though it is still useful. 14

Definition 21.3. If V is a vector space / F its dual space is then homF(V ,F).

21.2 Notation for dual space

The notation is V̂ .
An element of V̂ is called a linear functional on V . This is a function f : V → F and v → f (v) where v is a
vector and f (v) is a scaler.
V has a basis v1, . . . ,vn. Then define, v̂i ∈ hom(V ,F) as

v̂i(v j)=
{

0 i 6= j
1 i = j

These are the T ′
i js from the previous proof.

This implies v̂1, v̂2, . . . , v̂k is a basus for V̂ .
This is called THE DUAL BASIS FOR v1,v2, . . . ,vn.
Corollary: If V is finite dimensional and v 6= 0 in V , then there is an element f ∈ V̂ such that f (v) 6= 0.

Remark 21.4. In fact, corollary is also true for V infinite dimension, but proof involves navigating logical
minefields.

14The nice and universal come from model theory. Why did sir mention it? Who knows?
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21.3 Dual of a Dual

Let v0 ∈V . Let f vary over V̂ then define Tv0 ∈ hom(V̂ ,F) as

v̂ → F

f → f (v0)

Call homF(v̂,F)= ˆ̂V .
Then define ψ : V → ˆ̂V v → Tv.

Tv+w( f )= f (v+w)= f (v)+ f (w)= Tv( f )+Tw( f )

ψ(v+w)=ψ(v)+ψ(w)

Similarly, ψ(λv)=λψ(v)
This implies ψ is a linear map between V and ˆ̂V .

21.4 ψ isomorphism?
When is ψ(v)= 0?
Assume Tv = 0 for some V .
Then Tv( f )= 0∀ f ∈ V̂
f (V )= 0∀ f ∈ V̂ .
For V finite dimension 15.
ψ : V ∼−→ ˆ̂V is an isomorphism.
This is a canonical identification as no choices were made.

21.5 Inner Product Spaces
Let F be R or C now.
WHAT OTHER IDEAS ABOUT VECTORS OVER R AND C?
Length
Perpendicularity
Both special cases of the notion of a dot product aka ’scaler product’ aka ’inner product’.

Example 21.5. v = (x1, x2, x3),w = (y1, y2, y3) ∈R3, then

v ·w = x1 y1 + x2 y2 + x3 y3

length of v =p
v ·v

cosθ = vẇp
vv̇

p
wẇ

21.6 Formal properties over R
1. uv̇ = vu̇
2. uu̇ = 0 ⇐⇒ u = 0
3. u(̇αv+βw)=α(uv̇)+β(uẇ)

21.7 Dot product over compelx
Notice, this defination doesn’t work in complex.
For example, V = (1, i,0) ∈C3 has length 0. Also, it may have complex length by this method which doesn’t
make sense.
So we define dot product as:

vẆ = x1 y1 + x2 y2 + x3 y3

This gives us:
1. uv̇ = vu̇
2. uu̇ = 0 ⇐⇒ u = 0
3. u(̇αv+βw)=α(uv̇)+β(uẇ)

15and also infinite dimensional by the remark, but we don’t talk about it.
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21.8 In general field
Definition 21.6. u,v ∈V∃< u,v >∈ Fs.t.
1. < u,v >=< v,u >
2. < u,u >≥ 0 and < u,u >= 0 ⇐⇒ u = 0

3. <αu+βv,w >=α< u,w >+β< v,w >

22 7 November, 2024

22.1 Recall
Definition 22.1. u,v ∈V∃< u,v >∈ Fs.t.
1. < u,v >=< v,u >
2. < u,u >≥ 0 and < u,u >= 0 ⇐⇒ u = 0

3. <αu+βv,w >=α< u,w >+β< v,w >
Remark 22.2. Using 1 and 3,

< u,αv+βw >=<αv+βw,u >
=α< v,u >+β< w,u >
=α< v,u >+β< w,u >
=α< v,u >+β< w,u >

Example 22.3. Let V = Fn,u = (α1,α2, . . . ,αn),v = (β1,β2, . . . ,βn) then,

< u,v >=α1β1 +α2β2 +·· ·+αnβn

Example 22.4. Let V be a set pf continuos real/complex valued functions on [0,1].

f (t), g(t) ∈V

〈 f (t)mg(t)〉 =
∫ 1

0
f (t)g(t)dt

Check if this is indeed an inner product.

22.2 On Length and CSI
Definition 22.5. length of v ∈V

‖v‖ =
√
〈v,v〉

Lemma 22.6.
〈αu+βv,αu+βv〉 =

Corollary
‖αv‖ = |α|‖v‖

Lemma 22.7. If a,b, c ∈Rs.t.a ≥ 0 and aλ2 +bλ+ c ≥ 0∀λ ∈R then b2 ≤ ac

Theorem 22.8 (Cauchy Scwarz Inequality). If u,v ∈V , then |〈u,v〉| ≤ ‖x‖ ·‖y‖
Proof. (Case 1) If u = 0 then,
Claim: 〈u,v〉 = 0 for any v ∈V
In which case |〈u,v〉| = 0= ‖u‖ · ‖v‖
(Case 2) If u 6= 0, 〈u,v〉 ∈R
Then for any λ ∈R

0≤〈λu+v,λu+v〉
=λ2〈u,u〉+2〈u,v〉+〈v,v〉
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Let a = 〈u,u〉,b = 〈u,v〉, c = 〈v,v〉, by the quadratic idea, we have

b2 ≤ ac

〈u,v〉2 ≤ 〈u,u〉〈v,v〉
=⇒ |〈u,v〉| ≤ ‖x‖ · ‖y‖

(Case 3) u 6= 0, 〈u,v〉 ∉R
Let α= 〈u,v〉 then α 6= 0 as 0 ∈R.
Then 〈 u

α
,v〉 = 1

α
α= 1.

By the previos case, applied to u
α

and v,

1= |〈u
α

,v〉| ≤ ‖u‖
|α| ‖v‖

∴ 1≤ ‖u‖
|α| ‖v‖

∴α≤ ‖u‖‖v‖
=⇒ |〈u,v〉| ≤ ‖x‖ · ‖y‖

Corollary("Cauchy")

|α1β1 +α2β2 +·· ·+αnβn|2 ≤
(|α1|2 +|α2|2 +·· ·+ |αn|2

)(|β1|2 +|β2|2 +·· ·+ |βn|2
)

Corollary("Schwarz")

|
∫ 1

0
f (t)g(t)dt|2 ≤

(∫ 1

0
| f (t)|2dt

)
·
(∫ 1

0
|g(t)|2dt

)
A philosophical idea is that average velocity over time has to be less than or equal to the average

velocity over sidtance. Equality only occurs at a constant velocity.

22.3 Orthogonal
Definition 22.9. If u,v ∈V , then u is orthogonal to v of 〈u,v〉 = 0.
Similerly, v is orthogonal to u as 〈u,v〉 = 〈v,u〉
Definition 22.10. If W ⊆V subspace, the orthogonal complement of W ,

W⊥ = {x|x ∈V ,〈x,w〉 = 0∀w ∈W}

Lemma 22.11. W⊥ is a subspace of V

Proof. a,b ∈W⊥, then for any w ∈W ,

〈αa+βb,w〉 =α〈a,w〉+β〈b,w〉 =α∗0+β∗0= 0

Lemma 22.12.
W ∩W⊥ = (0)

Proof. If w ∈W ∩W⊥, then 〈w,w〉 = 0 which is a contradiction.

Definition 22.13. A set of vectors {vi} ∈V is orthonormal set if
1. 〈vi,vi〉 = 1

2. 〈vi,v j〉 = 0 if i 6= j

Lemma 22.14. If {vi} ∈V is an orthonormal set vi are linearly independent. Further, if w =α1v1+·· ·+αnvn
then αi = 〈w,vi〉.
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Proof. Suppose
β1v1 +β2v2 +·· ·+βnvn =~0

Take inner product with vi

β1〈v1,vi〉+ · · ·+βi〈vi,vi〉+ · · ·+βn〈vn,vi〉 = 0

The LHS =βi and RHS = 0 which implies βi = 0 for all i.
Same computation gives the second part.

Corollary: If {v1,v2, . . . ,vn} is an orthonormal set in V and if w ∈V then

u =W −〈w,v1〉v1 −〈w,v2〉v2 −·· ·−〈w,vn〉vn

is orthogonal to each of v1,v2, . . . ,vn.

Theorem 22.15 (Gram-Schmidt orthogonalisation process). Let V be a finite dimensional vector space,then
V has an orthonormal set as a basis.

Proof. Let v1,v2, . . . ,vn be any basis of V .
From this basis, we’ll construct an orthonormal set of n vectors.
Define w1 = v1

‖v1‖ =⇒ 〈w1,w1〉 = 1
Question For what value of α is αw1 +v1 orthogonal to w1

〈αw1 +v2,w1〉 = 0

α〈w1,w1〉+〈v2,w1〉α=−〈v2,w1〉

Define u2 := v2 −〈v2,w1〉w1.

Also define w2 = u2
‖u2‖ Similerly, u3 = v3−〈v3,w1〉w1−〈v3,w2〉w2

... ui+1 = vi+1−〈vi+1,w1〉w1−〈vi+1,w2〉w2−
·· ·−〈vi+1wi〉wi

Remark 22.16. Given r linearly independent vectors, we get an orthonormal ser with r vectors.

23 12 November, 2024

23.1 Recall
Theorem 23.1. Let V be a finite dimensional inner product space, Then V has an orthonormal basis.

Example 23.2. V = set of polynomials in variable t with degree ≤ 2.
We define inner product as 〈 f (t), g(t)〉 = ∫ 1

−1 f (t)g(t)dt
A basis if {1, t, t2} =⇒ v1 = 1,v2 = t,v3 = t2

Using Grahm-Schidt algorithm,

w1 = v1

‖v1‖
= 1√∫ 1

−1 dt
= 1p

2

u2 = v2 −〈v2,w1〉w1 = t−
(∫ 1

−1
t

1p
2

)
1p
2
= t

w2 = u2

‖u2‖
= t√∫ 1

−1 t2dt
=

√
3
2

t

u3 = v3 −〈v3,w1〉w1 −〈v3,w2〉w2 = t2 − 1
3

w3 =
p

10
4

(3t2 −2)
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23.2 Perpendicular Space

Theorem 23.3. If V is a finite dimensional inner product space and if W ⊆V subspace, then V =W +W⊥

Proof. W itself is an inner prodict space.
This implies W has an orthonormal basis w1,w2, . . . ,wr.
For any v ∈V ,

v0 = v−〈v,w1〉w1 −〈v,w2〉w2 −·· ·−〈v,wr〉wr

is orthogonal to each wi; hence all of W .
∴ v0 ∈W⊥ Then,

v =
(

r∑
i=1

〈v,wi〉wi

)
+v0

Note v ∈V by hypothesis and the first part of the sum is from W and the second from W⊥

Proof 2. Assume F=R for simplicity. Let v ∈V .
Claim(1): We can find w0 ∈W s.t.‖v−w0‖ ≤ ‖v−w‖ for w ∈W
Claim(2): If Such a w0 exists, then 〈v−w0,w〉 = 0∀w ∈W .

Proof of claim(2). Assume for v ∈V , such w0 exists so that ‖v−w0‖ ≤ ‖v−w‖∀w ∈W .
Now, let w ∈W . then w+w0 ∈W .

=⇒ 〈v−w0,v−w0〉 ≤〈v− (w0 +w),v− (w0,w)〉
=〈w,w〉+〈v−w0,v−w0〉−2〈v−w0,w〉

=⇒ 2〈v−w0,w〉 ≤〈w,w〉
If m is any positive integer then 1

m w = w
m ∈W

=⇒ 2〈v−w,
w
m

〉 ≤ 〈 w
m

,
w
m

〉

=⇒ 2
m

〈v−w,w〉 ≤ 1
m2 〈w,w〉

=⇒ 2〈v−w,w〉 ≤ 1
m

〈w,w〉

As m →∞, 2〈v−w,w〉 ≤ 0.
As for all w ∈W , −w ∈W .

=⇒ 2〈v−w0,−w〉 ≤ 0

=⇒ −2〈v−w0,w〉 ≤ 0

=⇒ 2〈v−w0,w〉 ≥ 0

By squeeze theorem, 〈v−w0,w〉 = 0 for all w ∈W .

Proof of Claim (i). Let u1,u2, . . . ,uk be a basis of W . Let w ∈W be written as w =λ1u1 +λ2u2 +·· ·+λkuk.
Let βi j := 〈ui,u j〉,
Let νi := 〈vi,ui〉.
Thus,

〈v−w,v−w〉 = 〈v−λ1w1 −λ2w2 −·· ·−λkuk,v−λ1w1 −λ2w2 −·· ·−λkuk〉
= 〈v,v〉+∑

i, j
βi jλiλ j −2

∑
i
νiλi

As w varies over all of W , λi ’s vary.
This makes it a function of λi ’s.
It is clearly non-negative and of degree 2.
Using calculus 216, we can say this has a minimum for some tuple.

(λ1,min,λ2,min, . . . ,λk,min)

Take w corresponding to this tuple.
16According to sir, this is an ad for the second semester courses.
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Alternate proof. Define a metric S(x, y) := ‖x− y‖. V is a metric space.
Let S := {w ∈W | ‖v−w‖ ≤ ‖v‖}.
Claim(left as excercise) S is compact Then f (v)= ‖v−w‖ is a continuous function.
∴ it achives a minimum over S call it W .

23.3 Orthogonal Projection

Theorem 23.4. Every vector v ∈V can be uniquly written as v = w+u for w ∈W and u ∈W⊥

Orthogonal projection from V →W is a map. We call it π.

π : V →W ,π(v)= w

Example 23.5. Prove that π is linear map.

π can also be defined at the unique linear map π : V →W such that

π(w)= w if w ∈W

π(u)= 0 if u ∈W⊥

23.4 Projection Formula
If w1,w2, . . . ,wk is an orthonormal basisa for W ,

π(v)= 〈w1,v〉w1 +〈w2,v〉w2 +·· ·+〈wk,v〉wk

Corollary: If V has orthonormal basis v1,v2, . . . ,vn, then for v ∈V

v = 〈v1,v〉v1 +·· ·+〈vk,v〉vk

23.5 Bilinear form
For now, let V be a real vector space.
A bilinear form on V is a real valued function.

V ×V →R

(v,w)→〈v,w〉
linear in each variable.
〈rv1 +v2,w〉 = r〈v1,w〉+〈v2,w〉
〈v, sw1 +w2〉 = s〈v,w1〉+〈v,w2〉
Form of Rn given by

〈X ,Y 〉 = X t AY , A is n×n matrix

is an example of a binear form.
The dot product is the case A = I.
If a basis v1, . . . ,vn is is given of V , then the matrix A corresponds to

A = (a)i, j,ai j = 〈vi,v j〉
Proposition 23.6. If X and Y are coordinate vectors of v and w, then 〈v,w〉 = X t AY where A is as before.

Proof.

〈v,w〉 = 〈∑
i

vixi,
∑

j
v j x j〉

=∑
i, j

xi〈vi,v j〉yj

=∑
i, j

xiai j yj

=⇒ 〈v,w〉 = X t AY
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Corollary: The inner product is symmetric if and only if A is symmetric.

24 14 November, 2024

24.1 Recall
〈v,w〉 is a bilinear form V ×V →R.
A is a matrix associated to 〈v,w〉.

A = (ai j), ai j = 〈vi,v j〉
17

24.2 Change of basis
18

24.3 Hermitian Forms
We are switching the defination of Inner product around here.

〈cv1,w1〉 = C̄〈v1,w1〉
〈v1 +v2,w1〉 = 〈v1,w1〉+〈v2,w1〉

〈v1, cw1〉 = c〈v1,w1〉
〈v1,w1 +w2〉 = 〈v1,w1〉+〈v1,w2〉

〈v1,w1〉 = 〈w1,v1〉
〈v,v〉 ∈R∀v

Definition 24.1. Adjoint A∗ of a complex matrix (ai j) defined by

A∗= (a∗i j) ⇐⇒ a∗i j = ¯a ji

[
1 1+ i
2 i

]
∗=

[
1 2

1− i −i

]
Definition 24.2. A square matrix is hermitian or self-adjoint if A = A∗.
A real mi,ner os self adjoint if and on;y if it is symmetric.

Definition 24.3. The matrix of a Hermition form with respect to a basis v1,v2 . . . ,vn

A = (ai j), ai j = 〈vi,v j〉
Proposition 24.4. If X and Y are colmn vectrs of v and w, then

〈v,w〉 = X t AY

Definition 24.5. A Hermitian form is positive definite if 〈v,v〉 > 0 for every nonzero v ∈V .
A Hermitian matrix is positive definite if X ∗AX is positive for every non-zero complex colimn vector in Cn.

24.4 Change of Basis

〈v,w〉 = X ∗ AY
= (PX ′)∗ A(PY ′)
= (X ′)∗ (P ∗ AP)Y ′

Corollory The standard Hermitian form x̄1 y1 + x̄2 y2 +·· ·+ x̄n yn <fill here>
17CMI WIFI is a kludge. Please fucking work sometime.
18CMI WIFI is even a bigger kludge.
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24.5 This may land you a PhD position.
Proposition 24.6. The eiganvalues of a self-adjoint matrix are real numbers.

Proof. Let X be an eiganvector with eiganvalue λ Then X ∗ AX = X ∗ (λX )=λX ∗ X .
Note: (λX )∗= λ̄X∗.

A∗= A
X ∗ AX = (X ∗ A)X = (X ∗ A∗)X = (AX )∗ X = (λX )∗ X = λ̄X ∗ X and X X∗ 6= 0 =⇒ λ= λ̄

Corollary Trace and Determinent of a self adjoint matrix are real. Corollary The eiganvalues of a
real symmetric matrix are real numbers.

24.6 Orthogonality
Definition 24.7. v and w are orthogonal if and only if 〈v,w〉 = 0.

Example 24.8.
〈X ,Y 〉 = x1 y1 + x2 y2 + x3 y3 − x4 y4

=⇒


1

1
1

−1


indefinite forms.
When a form is indefinite, a vector might be self-orthogonal.

Definition 24.9. W ⊆V
W⊥ := {v ∈V | 〈v,w〉 = 0∀w ∈W}

A null vector v ∈V is such that 〈v,v′〉 = 0∀v′ ∈V .
The V⊥ or null space of V is the space of all null vectors.
A form V is non-degenerate if V⊥ = {0} if and only if for all non-zero v there is a vector v′ such that
〈v,v′〉 6= 0.

Lemma 24.10. A form on V is non-degenerate on W ⊆V ⇐⇒ W ∩W⊥ = {0}

Proposition 24.11. Let 〈,〉 be a non-degenerate Hermitian form on V . If 〈v,w〉 = 〈v′,w〉∀w ∈V =⇒ v = v′.

Proposition 24.12. (a) A vector v is a null vector if and only if its coordinate vector Y in the basis
(v1,v2, . . .vn) solves the equation

AY = 0

where A is the matrix of 〈,〉 in the basis.
(b) The form is non-degenerate if and only if A is invertible.

Proof. If Y is such that AY = 0 then X ∗ AY = 0∀x that is Y is orthogonal to the entire space.
Conversely, if AY 6= 0, the it has at least one non-zero coordinate, say ith.
Then e∗i AY is that coordinate.

25 19 November, 2024

25.1 Recall
〈.〉 symmetric over a real vector space or Hermitian on complex vector spae.
A matrix wrt some basis B
(a) a vector v is a null vevtor if and only if its coordinate vector Y wrt basis B solves AY = 0.
(b) The form is non-degenerate if and only if A is invertible.
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Theorem 25.1. (8.4.5 Artin) let 〈.〉 as before.
W ⊆V (a) The form is nondegenerate on W if and only if V =W ⊕W⊥.
(b) If the form is nondegerate on V and on W , then it is non-degenrate on W⊥.

Lemma 25.2. If 〈.〉 as befoe is not identcally zero, then ∃v ∈V s.t.〈v,v〉 6= 0.

Proof. ∃x, y ∈V s.t.〈x, y〉 6= 0 and 〈x, y〉 = 〈y, x〉 or 〈y, x〉.
Then, 〈x+ y, x+ y〉 = 〈x, x〉+〈x, y〉+〈y, x〉+〈y, y〉 gives the answer.

Theorem 25.3. Let 〈.〉 as before. There exists an orthogonal basis for V where orthogonal basis := {v1, . . . ,vn}s.t.〈vi,v j〉 =
0 if i 6= j

Proof. If 〈.〉 is identiacally zero, then every basis is orthogonal.
If 〈< .>〉 is not identically zero, then ∃v ∈V s.t.〈v,v〉 6= 0.
Then choose {v} as the first vector in the basis and let W :=Span(V ).
On W the form is non-degenerte.

V =W ⊕W⊥

By induction on dimension, W⊥ has an orthogonal basis.

{v2,v3, . . . ,vn}

Then append v1 to it.

Corollary: Let 〈.〉 be as before. Then there is an orthogonal basis v1,v2, . . . ,vn such that for each i,
〈vi,vi〉 = 1 or −1 or 0.
p := Number of i such that 〈vi,vi〉 = 1
q := Number of i such that 〈vi,vi〉 =−1
z := Number of i such that 〈vi,vi〉 = 0
(p, q) is the signature of the space and is invariant.
If the form is positive definite if and only if q and z are both 0.

25.2 Our first ever deep theorem

25.3 Spectral Theorem
Definition 25.4. A real vector space with a positive definite symmetric bilinear form - "inner product space"
is Euclidian Space. A complete inner product space is a Hermitian space.

T : V →V a linear operator on a Hermitian space V .
A metric with respect to some basis B.
The adjoint operator T∗ : V →V is the operator whose matrix with respect to B is the adjoint matrix A∗.

Definition 25.5. A normal matrix is a complex matrix A s.t. A∗ A = AA∗
If A∗= A, Hermitian matrix then A is normal.

A∗= A−1 ’Unitary matrix’ then A is normal.

Lemma 25.6. A n×n matrix C.
P n×n unitary matrix.
If A is normal, Hermitian or unitary, so is P ∗ AP.

Definition 25.7. A linear operator on a Hermitian space is normal, Hermitian or unitary.

If its matrix with respect to an orthonormal basis has the same property.
Proposition: (a) ∀v,w ∈V ,

〈Tv,w〉 = 〈v,T ∗w〉
< v,Tw >= 〈T ∗v,w〉
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Proof. (a) Choose an orthonormal basis in which matrix of 〈< .>〉 is identity .
Let X and Y be column vectors of v and w in the same basis B, then

〈Tv,w〉 = (MT X )∗Y = X ∗M∗T Y

〈v,T ∗w〉 = X ∗M∗T Y

Proposition (b) T is normal ⇐⇒ ∀v,w ∈V

〈Tv,Tw〉 = 〈T ∗v,T ∗w〉

Proof. Substitute T ∗v instead of v in the first equation of (a).
Substitute Tv instead of v in the second equation of (a).
Compare the above.

Proposition (c) T is Hermitian ⇐⇒ ∀v,w ∈V

〈Tv,w〉 = 〈v,Tw〉

Proposition (d) T is unitary ⇐⇒ ∀v,w ∈V

〈Tv,Tw〉 = 〈v,w〉

26 Final Class

26.1 Recall
T : V →V linear operator.
V is Hermitian Space.
(a) ∀v,w ∈V ,〈Tv,w〉 = 〈v,T ∗w〉
〈T ∗v,w〉 = 〈v,Tw〉
(b) T normal ⇐⇒ ∀v,w ∈V ,〈Tv,Tw〉 = 〈T ∗v,T ∗w〉; TT∗= T ∗T
(c) T Hermitian ⇐⇒ ∀v,w ∈V ,〈Tv,w〉 = 〈v,Tw〉; T = T∗
(d) T is unitary ⇐⇒ ∀v,w ∈V ,〈Tv,Tw〉 = 〈v,w〉; TT∗= I ⇐⇒ T−1 = T∗

26.2 More recall
A subspace W ⊆V is T-invariant if TW ⊆W .
From above, it follows that a normal/Hermitian/unitary operator will have the same property on an in-
varient subspace.

Proposition 26.1. T : V →V a linear operator V →V and W T-invarient then W⊥ is T∗-invarient.

Proof. To show if u ∈W⊥, then

T ∗u ∈W⊥ ⇐⇒ 〈w,T ∗u〉 = 0∀w ∈W

But 〈w,T ∗u〉 = 〈Tw,u〉 where Tw ∈W and u ∈W⊥.
Thus, by definition, 〈Tw,u〉 = 0∀w ∈W . And we are done!

Corollary If W is T∗-invarient then W⊥ is T-invarient.

Theorem 26.2. Let T be a normal operator on a Hermitian Space V .
Let v be an eigan-vector of T with eigan-value λ.
Then v is also an eigan-vector of T∗ with eigan-value λ̄.
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Proof. (i) Say λ= 0
Then Tv = 0. To show T ∗v = 0.
0= 〈Tv,Tv〉 = 〈T ∗v,T ∗v〉
∴T ∗v = 0.
(ii) λ 6= 0.
Let S = T −λI
Then v is an eigen vector of S with eigen value 0.
Also, S∗= T ∗−λ̄I.
Check S is a normal operator.
Then by case (i), the proof is finished.

Theorem 26.3 (Spectral Theorem for normal operators). Let T be a normal operator on the Hermitian
space V .
Then there is an orthonormal basis of V consisting of eiganvectors of T.

Proof. Choose an eigenvectors for v1, for T.
Normalize its length to 1 by scaling if necessary.
Note v1 is also eigenvector for T∗.

w1 =Span(v1) is T∗-invarient

∴w⊥
1 is T-invarient

T restricted to w⊥
1 is also normal.

∴w⊥
1 has an orthonormal basis consisting of eigencectors of T, say {v2,v3, . . . ,vn}.

Adding v1 to this set gives the required basis.
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