
Analysis 1 Quiz 1 Answers
Comments are welcome

1. Short questions.

(a) Write a sequence of positive real numbers whose limsup is as large as possible and whose liminf is as
small as possible (here small and large are understood in extended reals). Specify the sequence clearly and
state the values of limsup and liminf. You need not justify.

Many answers are possible, e.g., 2, 12 , 3,
1
3 , 4,

1
4 , 5,

1
5 , . . . , n,

1
n , . . ., with lim sup =∞ and lim inf = 0.

(b) “pn → a” in R means the following sentence S: for every ε > 0, there is a positive integer N such that
for all integers n > N , one has |pn − a| < ε (Complete the sentence by filling in the blank space.)

Now write a similarly precise definition of the statement “A given sequence {pn} does NOT converge in R”.
No justification is required. The answer “the sentence S is false for every real number a” will get no credit
(but could be a starting point for your thinking).

For each a ∈ R there is ε > 0 such that for each positive integer N , there is an integer n > N with |pn−a| ≥ ε.

(c) Consider three possible properties of a given sequence of real numbers.

A. Cauchy B. bounded below C. monotonically decreasing

Write all implications of the types (i) X⇒ Y and of type (ii) (X and Y)⇒ Z, where X, Y, Z are distinct labels
chosen from A, B, C. Justify briefly. You may simply quote relevant results. Do not write implications of
type (ii) subsumed in those of type (i). No need to give counterexamples for invalid implications.

A implies B as every Cauchy sequence is bounded on both sides. (Direct proof is easy or, if you wish, use
that Cauchy implies convergent, which implies bounded.) In addition, B and C together imply that the
sequence is convergent, hence Cauchy.

2. For a sequence {pn} of real numbers consider the four statements below. State and prove all implications
among them. A (precise) sketch is ok. Hint: this is not arduous. One of the implications involving lim sup was
briefly discussed in last class, but you should not just quote it. Recall that lim supn→∞ pn = limm→∞ sm =
infm sm because s1 ≥ s2 ≥ . . . . Here sm is the supremum (in extended reals) of the “tail” {pm, pm+1, . . .}.

(i) For any real x, there exists a positive integer n such that pn > x.

(ii) For any real x and any positive integer m, there is an integer n such that n > m and pn > x.

(iii) lim supn→∞ pn =∞

(iv) {pn} has a subsequence {pnk
} such that pnk

→∞.

All four are equivalent. Here is a sketch showing (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i), but one should really work
this out for oneself. There is little learning value in seeing someone else’s detailed proof.

For (i) ⇒ (ii) argue by contradiction by applying (i) to the maximum of x and p1, . . . , pm.

For (ii) ⇒ (iii), observe that by (ii), for any real x, the supremum of any tail is > x.

For (iii)⇒ (iv) imitate the argument in class: pick any pn1
. The supremum of each tail must be∞. (Why?)

So from the tail pm with m > n1, pick pn2
> pn1

+ 1, and so on.

Finally (iv) ⇒ (i) is direct by definition of pnk
→∞.



3. Carefully show from basic principles (namely that R is a complete ordered field) that for any given real
number x, there is an integer n such that n < x. I do not want to see the following argument (even if you
reproduce the proof of the Archimedean property of R): “We know that there is an integer m > −x. So
−m < x and hence n = −m works.” You can of course imitate the proof of the Archimedean property.

Imitate the proof of Rudin 1.20a. If every integer n satisfies n ≥ x then x is a lower bound for the set Z of
all integers, which is a nonempty proper subset of R. Therefore Z has a greatest lower bound, say α, in R.
But then α + 1, being greater than α, is not a lower bound for Z. So α + 1 > m for some integer m. But
this implies that α > the integer m− 1, contradicting that α is a lower bound for every integer.

4. Suppose {pn} is a Cauchy sequence in a metric space X such that a certain subsequence {pnk
} converges

to p ∈ X. Show from first principles that pn → p. Write the answer to this question in the space below.

This is Rudin problem 3.20, which was on HW 3. The argument is standard and was also sketched in class.


