Discrete Mathematics Problem Sheet 3

Feb 28, 2025

- 1. Let X be a finite universe and $A_i \subseteq X, 1 \le i \le n$. Using the version of inclusion-exclusion principle derive the expression for $|\bigcup_{i=1}^n A_i|$ in terms of $|A_I|, I \subseteq [n]$.
- 2. Let G be a graph on n vertices with edge set E. A proper k-coloring of G is a map $c:[n] \to [k]$ such that for all $\{u,v\} \in E$ we have $c(u) \neq c(v)$. Using inclusion-exclusion principle for counting the number of proper k-colorings, show that

$$\sum_{S \subseteq E} (1)^k k^{c(S)},$$

where c(S) is the number of connected components of the graph $G_S = ([n], S)$. A connected component of G_S is a maximal subset of vertices U of [n] such that any two vertices in U are reachable from each other using only edges in S.

- 3. Let P be a finite poset and μ its Möbius function. For any two elements $a, b \in P$ show that $\mu(a, b) = \sum_{i \geq 0} (-1)^i c_i$, where c_i is the number of chains in P between a and b.
- 4. For a prime p, let \mathbb{F}_p denote the finite field with p elements in it (field operations are addition and multiplication modulo p). Let (P, \subseteq) be the poset of all subspaces of the n-dimensional vector space \mathbb{F}_p^n , partially ordered by containment. What is |P|? Determine the Möbius function of P.
- 5. How many permutations π are there in S_n such that $\pi(i) \neq i$ for every even i.
- 6. Suppose there are 2n persons, each holding a number from [n] such that for each $i \in [n]$ exactly two persons are holding i. If we randomly line up these 2n persons, what is the probability that no two consecutive persons hold the same number?
- 7. Determine the number of graphs on n vertices with exactly m edges and exactly k isolated vertices (an isolated vertex is one which has no edges incident on it).

8. For a permutation $\pi \in S_n$, an index $i \in [n]$ is a descent if $\pi(i) > \pi(i+1)$. The set $D(\pi) = \{i < n \mid \pi(i) > \pi(i+1)\}$ is the descent set of π . For a subset S of [n-1] count the number of permutations in S_n whose descent set is contained in S. Using that count the number of permutations whose descent set if exactly S.