Probability Theory, HW 2 Solution Notes

Arjun Agarwal

$26~\mathrm{April}~2025$

This is a compilation of solutions for Assignment 2 of Probability Theory class instructed by Prof. R. Srinivasan. The solutions are of original design. The template is a modified template of the one used for USAMO solutions by Evan Chen.

Contents

1	Problems		
	Solu		3
	1.1	Problem 1	3
	1.2	Problem 2	4
		Problem 3	
	1.4	Problem 4	5
	1.5	Problem 5	5
		Problem 6	_
	1.7	Problem 7	6
	1.8	Problem 8	7
	1.9	Problem 9	8

§0 Problems

- 1. If X is a continuous random variable with distribution function F and density function f, show that the random variable Y = |X| is also continuous and express (with proof) its cumulative distribution function and density in terms of F and f. Find the density of Y when X has (i) normal distribution (ii) exponential distribution and (iii) the Cauchy distribution.
- **2.** Show that the $\int_{-\infty}^{\infty} |x\mu| f(x) dx$ becomes minimum when μ is the median of the distribution with density f. (For continuous distribution median is the point $x_0 \in \mathbb{R}$ such that $F(x_0) = \frac{1}{2}$.)
- 3. Show that the function

$$F(x,y) = \begin{cases} 0, & \text{if } x + y < 1 \\ 1, & \text{if } x + y \ge 1 \end{cases}$$

is not a joint distribution function.

- **4.** If the $\log X$ is normally distributed find the density X.
- **5.** Let f be the density function of the random variable X. Suppose that X has a symmetric distribution about a. Show that the mean $\mathbb{E}(X)$ equals a, provided it exists
- **6.** If $\mathbb{E}(X) = \mathbb{E}(X^2) = 0$, show that $\mathbb{P}(X = 0) = 1$
- 7. Let X and Y have the joint density

$$f(x,y) = cx^{n_1-1}(y-x)^{n_2-1}e^{-y}$$

with $0 < x < y < \infty$.

Find (a) the constant c, (b) the marginal distributions of X and Y.

- 8. Calculate the characteristic function of a Gamma distribution with parameters λ and α and deduce the characteristic function of χ^2
- **9.** Let X_1 and X_2 be independent exponential variables, parameter λ . Find the joint density function of (Y_1, Y_2) where $Y_1 = X_1 + X_2$, $Y_2 = \frac{X_1}{X_2}$, and show that they are independent.

§1 Solutions

§1.1 Problem 1

Problem statement

If X is a continuous random variable with distribution function F and density function f, show that the random variable Y = |X| is also continuous and express (with proof) its cumulative distribution function and density in terms of F and f. Find the density of Y when X has (i) normal distribution (ii) exponential distribution and (iii) the Cauchy distribution.

Proof. For k < 0, $K_Y(k) = 0$ as $Y = |X| \ge 0$. For $k \ge 0$,

$$F_Y(k) = \mathbb{P}(-k \le X \le k)$$

= $F_X(k) - F_X(-k)$

As X is a continuous random variable, the CDF is differentiable except at a measure zero set. Thus, differentiating on both sides

$$\frac{\mathrm{d}}{\mathrm{d}k}F_Y(k) = \frac{\mathrm{d}}{\mathrm{d}k}(F_X(k) - F_X(-k))$$

$$\implies f_Y(k) = f_X(k) + f_X(-K)$$

For k < 0, $f_Y(k) = 0$ as $Y = |X| \ge 0$ as PDF is 0 for Y < 0. (i)

$$f_{Y}(k) = f_{X}(-k) + f_{X}(k)$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(-k-\mu)^{2}}{2\sigma^{2}}\right) + \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(k-\mu)^{2}}{2\sigma^{2}}\right)$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(k+\mu)^{2}}{2\sigma^{2}}\right) + \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(k-\mu)^{2}}{2\sigma^{2}}\right)$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \left(\exp\left(-\frac{k^{2} + 2k\mu + \mu^{2}}{2\sigma^{2}}\right) + \exp\left(-\frac{k^{2} - 2k\mu + \mu^{2}}{2\sigma^{2}}\right)\right)$$

$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{k^{2} + \mu^{2}}{2\sigma^{2}}\right) \left(\exp\left(-\frac{2k\mu}{2\sigma^{2}}\right) + \exp\left(\frac{2k\mu}{2\sigma^{2}}\right)\right)$$

(ii)

$$f_Y(k) = f_X(-k) + f_X(k)$$
$$= 0 + \alpha e^{-\alpha k}$$
$$= \alpha e^{-\alpha k}$$

(iii)

$$f_Y(k) = f_X(-k) + f_X(k)$$

$$= \frac{1}{\pi} \left(\frac{\gamma}{(-k - x_0)^2 + \gamma^2} \right) + \frac{1}{\pi} \left(\frac{\gamma}{(k - x_0)^2 + \gamma^2} \right)$$

$$= \frac{\gamma}{\pi} \left(\frac{1}{(k + x_0)^2 + \gamma^2} + \frac{1}{(k - x_0)^2 + \gamma^2} \right)$$

§1.2 Problem 2

Problem statement

Show that the $\int_{-\infty}^{\infty} |x - \mu| f(x) dx$ becomes minimum when μ is the median of the distribution with density f. (For continuous distribution median is the point $x_0 \in \mathbb{R}$ such that $F(x_0) = \frac{1}{2}$.)

Proof. Define $g(\mu) := \int_{-\infty}^{\infty} |x - \mu| f(x) dx$ then,

$$g'(\mu) = \frac{\mathrm{d}}{\mathrm{d}\mu} \int_{-\infty}^{\infty} |x - \mu| f(x) \mathrm{d}x$$
$$= \int_{-\infty}^{\infty} \mathrm{sgn}(x - \mu) f(x) \mathrm{d}x$$
$$= -\int_{-\infty}^{\mu} f(x) \mathrm{d}x + \int_{\mu}^{\infty} f(x) \mathrm{d}x$$
$$= -F(\mu) + (1 - F(\mu))$$
$$= 1 - 2F(\mu)$$

Setting $g'(\mu) = 0 \implies F(\mu) = 1/2 => \mu = F^{-1}(0.5)$ that is μ is median, say M. To prove this is a maxima, the first derivative test suffices as for $\mu < M$, $1 - 2F(\mu) > 0$ as F is increasing and otherwise $\mu > M$ then $1 - 2F(\mu) < 0$ is decreasing making $\mu = M$ the maxima.

§1.3 Problem 3

Problem statement

Show that the function

$$F(x,y) = \begin{cases} 0, & \text{if } x + y < 1 \\ 1, & \text{if } x + y \ge 1 \end{cases}$$

is not a joint distribution function.

Proof. Proof by contradiction. Let F define a joint distribution function. Notice

$$\mathbb{P}(a < X < b, c < Y < d) = F(b, d) - F(a, d) - F(b, c) + F(a, c)$$

As probability is always non-negative, $\mathbb{P}(0 \le X \le 2, 0 \le Y \le 2) \ge 0$ but

$$F(2,2) - F(2,0) - F(0,2) + F(0,0) = 1 - 1 - 1 + 0 = -1$$

As -1 < 0, we have a contradiction.

Thus, F is not a valid joint distribution function.

§1.4 Problem 4

Problem statement

If the $\log X$ is normally distributed find the density X.

Proof. Let Nor $(\mu, \sigma^2) \sim Y = \log X \implies X = e^{(Y)}$ where Y is normally distributed. This implies

$$\mathbb{P}(X \le x) = \mathbb{P}(Y \le \log(x))$$

$$\implies f_X(x) = f_Y(\log(x)) \frac{1}{x}$$

$$\implies f_X(x) = \frac{1}{x\sqrt{2\pi}\sigma} \exp\left(-\frac{(\log(x) - \mu)^2}{2\sigma^2}\right)$$

§1.5 Problem 5

Problem statement

Let f be the density function of the random variable X. Suppose that X has a symmetric distribution about a. Show that the mean $\mathbb{E}(X)$ equals a, provided it exists

Proof. As the distribution is symmetric about a, f(a+x)=f(a-x) for all $x\in\mathbb{R}$. Making the substitution x=a+k

$$\mathbb{E}(X) = \int_{-\infty}^{\infty} x f(x) dx$$

$$= \int_{-\infty}^{\infty} (a+k) f(a+k) dk$$

$$= a \int_{-\infty}^{\infty} f(a+k) dk + \int_{-\infty}^{\infty} k f(a+k) dk$$

$$= a + \int_{-\infty}^{0} k f(a+k) dk + \int_{0}^{\infty} k f(a+k) dk$$

We will now make the substitution $k' = -k \implies dk' = -dk$

$$= a - \inf_{0}^{-\infty} -kf(a+k)dk' + \int_{0}^{\infty} kf(a+k)dk$$

$$= a + \inf_{0}^{\infty} k'f(a-k')dk' + \int_{0}^{\infty} kf(a+k)dk$$

$$= a + \int_{0}^{\infty} kf(a+K) + k'f(a-k')dk$$

$$= a - \int_{0}^{\infty} (k-k)f(a+k)dk$$

Note, the combining of the integrals could only be done if both the integrals were finite as otherwise $\pm\infty\pm\infty$ is undefined. Hence, this computation is only valid if $\mathbb{E}(a+K) \Longrightarrow \mathbb{E}(X)$ exists as X = a + K.

§1.6 Problem 6

Problem statement

If $\mathbb{E}(X) = \mathbb{E}(X^2) = 0$, show that $\mathbb{P}(X = 0) = 1$

Proof. Notice, $\sigma^2(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = 0 - 0^2 = 0$. Thus, by Chebyshev,

$$\mathbb{P}(|X - \mu| \ge k) \le \frac{\sigma^2}{k^2}$$

$$\implies \mathbb{P}(|X - 0| \ge k) \le \frac{0}{k^2}$$

$$\implies \mathbb{P}(|X| \ge k) \le 0$$

As probability is non-negative, $\mathbb{P}(|X| \ge k) \le 0 \implies \mathbb{P}(X \ge k) = 0 \implies \mathbb{P}(X \ne 0) = 0 \implies \mathbb{P}(X \ne 0) = 1 - 0 = 1.$

§1.7 Problem 7

Problem statement

Let X and Y have the joint density

$$f(x,y) = cx^{n_1-1}(y-x)^{n_2-1}e^{-y}$$

with $0 < x < y < \infty$.

Find (a) the constant c, (b) the marginal distributions of X and Y.

Proof. (a) We will use the fact that $\int_0^\infty \int_x^\infty f(x,y) dy dx = 1$, given $0 < x < y < \infty$. Making the substitution $t = y - x \implies dt = dy$ and

$$1 = \int_0^\infty \int_x^\infty cx^{n_1 - 1} (y - x)^{n_2 - 1} e^{-y} dy dx$$

$$= \int_0^\infty cx^{n_1 - 1} \int_0^\infty t^{n_2 - 1} e^{-t - x} dt dx$$

$$= \int_0^\infty cx^{n_1 - 1} e^{-x} \int_0^\infty t^{n_2 - 1} e^{-t} dt dx$$

$$= \int_0^\infty cx^{n_1 - 1} e^{-x} \Gamma(n_2) dx$$

$$= c\Gamma(n_2) \int_0^\infty x^{n_1 - 1} e^{-x} dx$$

$$= c\Gamma(n_1)\Gamma(n_2)$$

$$\implies c = \frac{1}{\Gamma(n_1)\Gamma(n_2)}$$

(b) For the marginal density of Y, using 0 < x < y

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

$$= \int_{0}^{y} \frac{1}{\Gamma(n_1)\Gamma(n_2)} x^{n_1 - 1} (y - x)^{n_2 - 1} e^{-y} dx$$

$$= \frac{1}{\Gamma(n_1)\Gamma(n_2)} e^{-y} \int_{0}^{y} x^{n_1 - 1} (y - x)^{n_2 - 1} dx$$

Making the substitution $x = yt \implies dx = ydt$.

$$f_Y(y) = \frac{1}{\Gamma(n_1)\Gamma(n_2)} e^{-y} y \int_0^y (yt)^{n_1 - 1} (y - yt)^{n_2 - 1} dt$$

$$= \frac{1}{\Gamma(n_1)\Gamma(n_2)} e^{-y} y^{n_1 + n_2 - 1} \int_0^1 t^{n_1 - 1} (1 - t)^{n_2 - 1} dt$$

$$= \frac{1}{\Gamma(n_1)\Gamma(n_2)} e^{-y} y^{n_1 + n_2 - 1} B(n_1, n_2)$$

$$= \frac{y^{n_1 + n_2 - 1} 1^{n_1 + n_2}}{\Gamma(n_1 + n_2)} e^{-1y}$$

$$= \operatorname{Gamma}(n_1 + n_2, 1)(y)$$

Thus, $Y \sim \text{Gamma}(n_1 + n_2, 1)$ For the marginal of X, using $x < y < \infty$ and making the substitution $t = y - x \implies dt = dy$

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

$$= \int_{x}^{\infty} \frac{1}{\Gamma(n_1)\Gamma(n_2)} x^{n_1 - 1} (y - x)^{n_2 - 1} e^{-y} dy$$

$$= \frac{1}{\Gamma(n_1)\Gamma(n_2)} x^{n_1 - 1} \int_{x}^{\infty} (y - x)^{n_2 - 1} e^{-y} dy$$

$$= \frac{1}{\Gamma(n_1)\Gamma(n_2)} x^{n_1 - 1} \int_{0}^{\infty} (t)^{n_2 - 1} e^{-t - x} dt$$

$$= \frac{1}{\Gamma(n_1)\Gamma(n_2)} x^{n_1 - 1} e^{-x} \int_{0}^{\infty} (t)^{n_2 - 1} e^{-t} dt$$

$$= \frac{1}{\Gamma(n_1)\Gamma(n_2)} x^{n_1 - 1} e^{-x} \Gamma(n_2)$$

$$= \frac{x^{n_1 - 1} 1^{n_1}}{\Gamma(n_1)} e^{-1x}$$

$$= \text{Gamma}(n_1, 1)(x)$$

Thus, $X \sim \text{Gamma}(n_1, 1)$.

§1.8 Problem 8

Problem statement

Calculate the characteristic function of a Gamma distribution with parameters λ and α and deduce the characteristic function of χ^2

Proof. Let $X \sim \text{Gamma}(\alpha, \lambda)$. Then,

$$\begin{split} \mathbb{E}(e^{itX}) \\ &= \int_0^\infty e^{itx} \frac{\lambda^\alpha x^{\alpha-1}}{\Gamma(\alpha)} e^{-\lambda x} \mathrm{d}x \\ &= \frac{\lambda^\alpha}{\Gamma(\alpha)} \int_0^\infty e^{itx} x^{\alpha-1} e^{-\lambda x} \mathrm{d}x \\ &= \frac{\lambda^\alpha}{\Gamma(\alpha)} \int_0^\infty x^{\alpha-1} e^{-(\lambda-it)x} \mathrm{d}x \end{split}$$

Making the substitution, $(\lambda - it)x = s \implies (\lambda - it)dx = ds$

$$\mathbb{E}(e^{itX}) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)(\lambda - it)} \int_{0}^{\infty} \left(\frac{s}{\lambda - it}\right)^{\alpha - 1} e^{-s} ds$$

$$= \frac{\lambda^{\alpha}}{\Gamma(\alpha)(\lambda - it)^{\alpha}} \int_{0}^{\infty} s^{\alpha - 1} e^{-s} ds$$

$$= \frac{\lambda^{\alpha}}{\Gamma(\alpha)(\lambda - it)^{\alpha}} \Gamma(\alpha)$$

$$= \frac{\lambda^{\alpha}}{(\lambda - it)^{\alpha}}$$

$$= \left(\frac{\lambda}{\lambda - it}\right)^{\alpha}$$

$$= \left(\frac{1}{1 - \frac{it}{\lambda}}\right)^{\alpha}$$

$$= \left(1 - \frac{it}{\lambda}\right)^{-\alpha}$$

As $\chi_k^2 \sim \operatorname{Gamma}(\frac{k}{2}, \frac{1}{2})$, therefore it's characteristic function is same as that for $\operatorname{Gamma}(\frac{k}{2}, \frac{1}{2})$ by the uniqueness of characteristic functions.

Thus, the characteristic function of χ_k^2 is $(1-2it)^{-\frac{k}{2}}$.

§1.9 Problem 9

Problem statement

Let X_1 and X_2 be independent exponential variables, parameter λ . Find the joint density function of (Y_1, Y_2) where $Y_1 = X_1 + X_2$, $Y_2 = \frac{X_1}{X_2}$, and show that they are independent.

Proof. By the definition of Gamma distribution as sum of waiting times of exponential distribution, $Y_1 \sim \text{Gamma}(\lambda, 2) \implies f_{Y_1}(y_1) = \lambda^2 y_1 e^{-\lambda y_1}$.

Now consider

$$F_{Y_2}(y_2) = \int_0^\infty F_{X_2}(y_2 x) f_{X_1}(x) dx$$

Probability Theory, HW 2 Solution Notes arjunagarwal.substack.com, updated 26 April 2025

$$= \int_0^\infty (1 - e^{-\lambda y_2 x}) \lambda e^{-\lambda x} dx$$

$$= \lambda \int_0^\infty e^{-\lambda x} - e^{-\lambda x (1 + y_2)} dx$$

$$= 1 - \frac{1}{1 + y_2}$$

$$\implies f_{Y_2}(y_2) = \frac{1}{(1 + y_2)^2}$$

As the joint distribution of X_1 and X_2 is $F_{(X_1,X_2)}(x_1,x_2)=\lambda^2 e^{-\lambda(x_1+x_2)}$ and $Y_1=X_1+X_2;Y_2=\frac{X_1}{x_2};$ thus the transformation Jacobian is

$$J = \begin{bmatrix} 1 & 1\\ \frac{1}{X_2} & -\frac{X_1}{X_2^2} \end{bmatrix}$$

Thus, the absolute determinent of the Jacobian is $|J| = \frac{X_1 + X_2}{X_2^2} = \frac{Y_1}{X_2^2}$. As $Y_2 = \frac{X_1}{X_2} = \frac{X_1 + X_2 - X_2}{X_2} = \frac{Y_1}{X_2} - 1 \implies X_2 = \frac{Y_1}{Y_2 + 1}$. Thus, $|J| = \frac{(Y_2 + 1)^2}{Y_1}$. As $X_1 = \frac{Y_1 Y_2}{Y_2 + 1}$; the joint distribution of Y_1 and Y_2 is

$$f_{(Y_1,Y_2)}(y_1,y_2) = \frac{1}{|J|} f_{(X_1,X_2)}(x_1,x_2)$$

$$= \frac{y_1}{(y_2+1)^2} \lambda^2 e^{-\lambda y_1}$$

$$= \lambda^2 y_1 e^{-\lambda y_1} \frac{1}{(y_2+1)^2}$$

$$= f_{Y_1}(y_1) f_{Y_2}(y_2)$$

Thus, Y_1 and Y_2 are independent.