11th April, 2025

Instructions

There is only one question, broken down into six parts. There is a bonus question that you can attempt for extra credit. Do NOT hesitate to ask me if you find the notation confusing. RELAX. Think.

Problem

Given a discrete random variable $X:\Omega\to S$, the measure μ_X induced by X is defined as:

$$\mu_X(A) = \mathbb{P}(X \in A), \ \forall A \subseteq S$$

Let $X_{n,m}$, $1 \leq m \leq n$ be a triangular array of random variables such that

$$\mathbb{P}(X_{n,m}=1)=p_{n,m} \ \text{ and } \mathbb{P}(X_{n,m}=0)=(1-p_{n,m})$$

We have the following conditions:

$$\lim_{n \to \infty} \sum_{m} p_{n,m} = \lambda \in (0,\infty) \text{ and } \lim_{n \to \infty} \max_{1 \le m \le n} p_{n,m} = 0$$
 Let $S_n = (X_{n,1} + \dots X_{n,n})$. We want to show that

$$S_n \Rightarrow \operatorname{Poisson}(\lambda)$$
 (†)

Pxn3

Let μ and ν be probability measures on $(\Omega, 2^{\Omega})$, where Ω is coutable. Define:

$$\|\mu - \nu\| \equiv \frac{1}{2} \sum_{z} |\mu(z) - \nu(z)| = \sup_{A \subseteq \Omega} |\mu(A) - \nu(A)|$$
 (††)

The first part of this problem provides a guided proof of (†), while the second part, for bonus marks, asks you to supply an alternative proof of the same result.

- 1. Follow the given outline:
- (a) Let Z_n , $1 \le n \le \infty$, be integer valued. Show that $Z_n \Rightarrow Z_\infty$ if and only if $P(Z_n = m) \to P(Z_\infty = m)$ for all $m \in \mathbb{Z}$.
 - (b) Notice that $d(\mu, \nu) = \|\mu \nu\|$ defines a metric on the set of probability measures on Z. Show that $\|\mu_n - \mu\| \to 0$ if and only if $\mu_n \Rightarrow \mu$. (Hint: How would you prove the second equality in (††)? For which A is the maximum attained?)
 - (c) If $\mu_1 \times \mu_2$ denotes the product measure on $\mathbb{Z} \times \mathbb{Z}$ that has $(\mu_1 \times \mu_2)(x,y) = \mu_1(x)\mu_2(y)$, then show

$$\|\mu_1 \times \mu_2 - \nu_1 \times \nu_2\| \le \|\mu_1 - \nu_1\| + \|\mu_2 - \nu_2\|$$

(d) If $\mu_1 * \mu_2$ denotes the convolution of μ_1 and μ_2 , that is, $\mu_1 * \mu_2(x) = \sum_y \mu_1(x-y)\mu_2(y)$, then show that $\|\mu_1 * \mu_2 - \nu_1 * \nu_2\| \le \|\mu_1 \times \mu_2 - \nu_1 \times \nu_2\|$.

14(042(2) -1(2)12(2)) < 14,(2)-1/(2)+1482)-13

(e) Let μ be the measure with $\mu(1) = p$ and $\mu(0) = 1 - p$. Let ν be a Poisson distribution with mean p. Then show

$$\|\mu - \nu\| \le p^2$$

(Hint: $1 - x \le e^{-x}$.)

- (f) Now prove (†). (Hint: What distribution does the sum of two independent Poisson random variables
- 2. (Bonus) Prove (†) using characteristic functions. (Hint: Let z_1, \ldots, z_n and w_1, \ldots, w_n be complex numbers of modulus ≤ 1 . Then $\left|\prod_{m=1}^n z_m - \prod_{m=1}^n w_m\right| \leq \sum_{m=1}^n |z_m - w_m|$.)

e-+ + - L< p2 e > 1 = (-P) < p2 1-x <1-x+2-... e-(-P< 282 3-4 - (= 2 $\frac{1}{P(2P+1)} < e^{p} \sqrt{2p+1}$ $1 - e^{-p} - \pi$ e-+n-1 <p2

0 \ \frac{2}{2} - \frac{1}{2} - \frac{p^3}{2} - \frac{p^3}{2} + \frac{1}{2} - \frac{p^3}{2} + \f

23 (元 P2 - P3 + ...

0 00 (12 P) -T. P2 (1+ 5)+....)

1 + + 5 0 1. - >