Probability Theory

Quiz 5

April 16, 2025

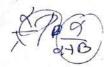
Instructions

- The quiz carries a total of 20 marks. The time for completion is 90 minutes.
- Attempt all 3 problems.
- · Begin the solution to each problem on a new sheet of paper.
- · You may use any facts stated in the Appendix while writing your solutions.
- · During the quiz, direct any questions related to Problems 1 and 2 to Vardhan, and questions related to Problem 3 to Harini.

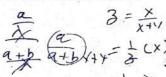
Problem 1

Let $X \sim \text{Gamma}(\alpha, \lambda)$ and $Y \sim \text{Gamma}(\beta, \lambda)$ be independent random variables, where $\alpha, \beta, \lambda > 0$. (See the Appendix for definitions.)

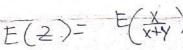
1. If
$$Z = \frac{X}{X+Y}$$
, show that



$$\mathbb{E}(Z) = \frac{\mathbb{E}(X)}{\mathbb{E}(X) + \mathbb{E}(Y)}$$



2. Find the value of $\Gamma(\frac{3}{2})$. (Hint: You may use the facts given in the appendix.)



Problem 2

5

5

Suppose there are r rooms in a hostel, and let Ri denote the event that the ith room is occupied (these events need not be independent). Let N be the number of rooms that are occupied. For $s \in [r] := \{1, 2, ..., r\}$, let $\mathcal{F}(s)$ denote the collection of all strictly increasing functions from [s] to [r]; that is,

$$\mathcal{F}(s) = \{ f : [s] \to [r] \mid f(1) < f(2) < \dots < f(s) \} \,.$$

Define:

$$\alpha(s) = \sum_{f \in \mathcal{F}(s)} \Pr\left(\bigcap_{i=1}^{s} R_{f(i)}\right)$$
 and $G_{\alpha}(z) = \sum_{s=0}^{r} \alpha(s) z^{s}$, take $\alpha(0) = 1$

Show that

$$P_{\mathbb{F}}(N=k) = \sum_{s=k}^{r} (-1)^{s-k} \alpha(s) \binom{s}{k}.$$

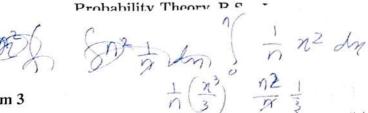
(Hint: First show that $\alpha(s) = \mathbb{E}\left[\binom{N}{s}\right]$, then expand $G_{\alpha}(z-1)$.)

(Optional: Try this after the quiz. This part will not be graded.)

Show that

$$\alpha(s) = \sum_{i=s-1}^{r-1} \binom{i}{s-1} (1 - F_N(i)),$$

where F_N denotes the cumulative distribution function (CDF) of N.



10

Problem 3

Let (X_n, Z_n) be a sequence of random variables on \mathbb{R}^2 such that $X_n \sim \text{Unif}[-n, n]$, $Y \sim \mathcal{N}(0, 1)$, independent of X_n , and $Z_n = X_n^2 + Y$ on \mathbb{R} .

- 1 1.5 1. (a) Write down the probability density function (pdf) of X_n as $f_{X_n}(x)$.
 - (b) Compute the joint density $f_{X_n,Z_n}(x,z)$. (Hint: use $Z_n \mid X_n$.)
- 2. (a) Compute $\mathbb{E}[Z_n \mid X_n = x]$ and $\text{Var}(Z_n \mid X_n = x)$.
 - (b) Compute E[Z_n] and Var(Z_n), i. without using (a) or (b)
 - ii. using (a) and properties of conditional expectation and variance from the appendix.
- (a) Does the sequence (X_n, Z_n) converge in distribution as $n \to \infty$? Check this using only the definition of convergence in distribution from the Appendix.
 - (b) State the continuity theorem for characteristic functions in 1D. Extend this to the 2D case we are considering, I using the definition of the joint characteristic function above.
- 4. (a) Compute the joint characteristic function

$$\phi_{X_n,Z_n}(s,t) := \mathbb{E}[e^{isX_n + itZ_n}],$$

1.5 and express it as an integral of a function in one variable (Hint: use $Z_n = X_n^2 + Y$).

(b) Levy's Continuity Theorem states that $(X_n, Z_n) \Rightarrow (X, Z)$ for some pair of random variables X and Z on R $\iff \phi_{X_n,Z_n}(s,t) \to \phi_{X,Z}(s,t) \ \forall (s,t) \in \mathbb{R}^2.$

Does $\phi_{X_n,Z_n}(s,t)$ converge pointwise? Use this to verify your answer in 3(a).

Appendix

1. If $A \sim \text{Gamma}(a, b)$, then

$$f_A(x) = \begin{cases} \frac{1}{\Gamma(a)} b^a x^{a-1} e^{-bx} & \text{if } x > 0, \\ 0 & \text{otherwise.} \end{cases}$$

Also, $E(A) = \frac{a}{b}$ and $Var(A) = \frac{a}{b^2}$.

2. The function $\Gamma(a)$ is defined as

$$\Gamma(a) = \int_0^\infty x^{a-1} e^{-x} dx.$$

It satisfies the identity:

$$\frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}=\int_0^1 x^{a-1}(1-x)^{b-1}dx.$$

For $a \in \mathbb{Z}^+$, $\tau(a) = (a-1)!$.

3.
$$\int_{-1/2}^{1/2} \left(\frac{1}{2} + x\right)^{1/2} \left(\frac{1}{2} - x\right)^{1/2} dx = \frac{\pi}{8}.$$

- 4. Let $(Xn : n \ge 1)$ and X be random variables. Denote the corresponding distribution functions by F_n and F respectively. We say that Let $(An: n \ge 1)$ and X be fundamentally an expected by $X_n \implies X$ (or X_n converges in distribution to X) \iff Y continuous bounded functions f, $E[f(X_n)] \to E[f(X)]$.
- 5. Given 2 random variables X and Y on R, $E[Y \mid X]$ is a random variable $x \mapsto E[Z_n \mid X_n = x]$. Taking its expectation gives a number $\mathbb{E}[\mathbb{E}[Y \mid X]].$
 - Law of total expectation: E[E[Y | X]] = E[Y].

