
Haskell Handouts Arjun Agarwal

Dynamic Programming
Done Right

1 A tale of few Pingda’s
Pingda numbers (or more populerly called Fibonacci numbers) are a sequence
of numbers defined as 1, 1, 2, . . . or the recursion F (n) = F (n− 1) + F (n− 2).
How can we generate the nth Pingda in haskell?
ping :: Integer -> Integer
ping 0 = 1
ping 1 = 1
ping n = ping (n-1) + ping (n-2)

Time Complexity

The time complexity of a plain recursion is

number of function calls × time complexity of a single call

We can clearly note that we first call ping (n-1) and ping (n-2).
Then each of them calls 2 more functions. This keeps going till we call
ping 1 or ping 0. This takes at-least n− 1 steps.
Thus, T (n) = O(2n−1) = O( 122

n) = O(2n).

The thing is, our code wastefully calculates a lot of values multiple times.
If we just knew the last two values, we could be done. What if we store them?
ping :: Integer -> Integer
ping n = fst (helper n) where

helper 0 = (1,1)
helper n = (a+b, a) where helper (n-1) = (a,b)

This code is more optimized as it is storing the last two values and doesn’t
recompute the same values many, many times. How much more optimized?

Time Complexity

We immediately call helper (n-1) which calls helper (n-2) and so on.
Notice, each of these calls is of O(1) times and we make n calls.
Thus, T (n) = O(n)
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This is the main idea of dynamic programming.

Idea

Dynamic Programming is a way to optimize recursion by storing previous
values to prevent computing the same value multiple times.
One way of doing DP is to store the previous values in a data structure
(we will use lists) which is refereed to as memo. Thus, this method is
also called memoization.

While smart in its own right, we will use a more involved method for this.

ping :: Integer -> Integer
ping 0 = 1
ping 1 = 1
ping n = dp !! (n-1) + dp !! (n-2)
dp = [ping n | n <- [0..]]

This may seem like worse, but it is equally good as haskell is lazy. The
elements of the list are not calculated till required and even when called, haskell
only calculates the called element, and no others.

Idea

While there are many ways to solve DP problems, the simplest and most
easy to do way is to write a brute force recursion and then memoize.

2 Frogs

Problem

There are N stones, numbered 1, . . . , N . For each 1 ≤ i ≤ N , the height
of Stone i is hi.
There is a frog who is initially on Stone 1. He will repeat the following
action some number of times to reach Stone N : If the frog is currently
on Stone i, jump to Stone i+ 1 or Stone i+ 2. Here, a cost of |hj − hi|
is incurred, where j is the stone to land on.
Find the minimum possible total cost incurred before the frog reaches
Stone N .

Let’s begin with the most brute force technique.
If I am at stone i, my cost to travel to N , ie cost i will be minimum of |hi−hi+1|
+ cost (i+1) and |hi − hi+2| + cost (i+2).
Let’s now write it in code.

minCost :: [Int] -> Int -> Int
minCost heights n = go n where

go 1 = 0
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go 2 = abs (heights !! 1 - heights !! 2)
go n = min (go (n-1) + abs (heights !! (n-1) - heights !! n

)) (go (n-2) + abs (heights !! (n-2) - heights !! n ))

This code has exponential time complexity. While, we will not compute it
explicitly, it is clearly not optimal.
This code surpasses the haskell playground time limit at N = 39.
So how do we do it better? We first look at the dynamic variables. What is
causing the values to change? In this case, it is n.
So we now start storing values. This looks like:

minCost :: [Int] -> Int -> Int
minCost heights n = go n where

go 1 = 0
go 2 = abs (heights !! 1 - heights !! 2)
go n = min (gom !! (n-2) + abs (heights !! (n-1) - heights

!! (n-2) )) (gom !! (n-3) + abs (heights !! (n-3) -
heights !! (n-1) ))

gom = [go x | x <- [1.. length(heights)]]

Here gom is memoizing due to haskell’s lazy computation. The is list is extended
only when called for and it is only called for when the list doesn’t have the re-
quired index.
This brings the time-complexity down straight to O(n).1

Idea

Use lists to memoize lazily.
Create a list with the values you need in the order they are generated in,
this is important. If your list is in reverse of the generation order, you
actually increase the time complexity.
That’s all. With a little maneuvering here and there, one can use this
everywhere.

3 Longest Common Subsequence

Problem

Given two strings, S1 and S2, the task is to find the length of the Longest
Common Subsequence. If there is no common subsequence, return 0.
Moreover, find a common subsequence of the above length. Return ”” if
there is no common subsequence.

The simple recursion solution is
1On Haskell Playground, this got me up to N ≥ 10000.
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lcsCount :: String -> String -> Int
lcsCount "" _ = 0
lcsCount _ "" = 0
lcsCount (x:xs) (y:ys) = if x == y then 1 + lcsCount xs ys

else max (lcsCount (x:xs) ys) (lcsCount xs (y:ys))

lcsString :: String -> String -> String
lcsString "" _ = ""
lcsString _ "" = ""
lcsString (x:xs) (y:ys) =

|x == y = x : lcsString xs ys
|length ((lcsString (x:xs) ys)) > length ((lcsString

xs (y:ys))) = lcsString (x:xs) ys
|otherwise lcsString xs (y:ys)

This has time complexity of O
(
2min(m,n)

)
.

But with no numbers anywhere in sight, how do we even even memoize it?
Let’s write the code a little different...
lcsCount :: String -> String -> Int
lcsCount s1 s2 = go (length s1) (length s2)

where
go 0 _ = 0
go _ 0 = 0
go i j

| s1 !! (i - 1) == s2 !! (j - 1) = 1 + go (i - 1) (j - 1)
| otherwise = max (go i (j - 1)) (go (i - 1) j)

Idea

We can use our DP idea if we have numbers. While strings are not
numbers, there indecies are.
So in such cases, we simply use treat the strings as global variables and
then make a numberical code running on them.

Well, now we can simply use out list idea.
lcsCount :: String -> String -> Int
lcsCount s1 s2 = go (length s1) (length s2)

where
go 0 _ = 0
go _ 0 = 0
go i j

| s1 !! (i - 1) == s2 !! (j - 1) = 1 + gom !! (i - 1) !! (j
- 1)

| otherwise = max (gom !! i !! (j - 1)) (gom !! (i - 1) !!
j)

gom = [[go m n | n <- [0..(length s2)]] | m <- [0..(length s1
)]]
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Let’s now solve for lcsString. The alternate code is

lcsString :: String -> String -> String
lcsString s1 s2 = go (length s1) (length s2)

where
go 0 _ = ""
go _ 0 = ""
go i j

| s1 !! (i - 1) == s2 !! (j - 1) = go (i - 1) (j - 1) ++
[s1 !! (i - 1)]

| length (go i (j - 1)) > length (go (i - 1) j) = go i (j
- 1)

| otherwise = go (i - 1) j

So we can now use our list memoization.

lcsString :: String -> String -> String
lcsString s1 s2 = go (length s1) (length s2)

where
go 0 _ = ""
go _ 0 = ""
go i j

| s1 !! (i - 1) == s2 !! (j - 1) = gom !! (i - 1) !! (j -
1) ++ [s1 !! (i - 1)]

| length (go i (j - 1)) > length (go (i - 1) j) = gom !!
i !! (j - 1)

| otherwise = gom !! (i - 1) !! j
gom = [[go m n | n <- [0..(length s2)]] | m <- [0..(length

s1)]]

And we are done.
While the naive code can’t even deal with two strings of length 15, our improved
code goes up-to 465.2

4 Edit Distance

Problem

Given two strings word1 and word2, return the minimum number of
operations required to convert word1 to word2.
You have the following three operations permitted on a word:

• Insert a character - 2 cost

• Delete a character - 2 cost

• Replace a character - 1 cost

2On haskell playground.
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Given two words, figure out the cost to convert from the first word to
other. Example:
Input: word1 = "horse", word2 = "ros"
Output: 5
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
1+2+2 = 5

Here the naive code is a bit harder to guess, but here is the idea.
The base cases are easy to guess, if the first word is empty, we just insert letters
till we have the second word.
If the second word is empty, we delete all the letters till we empty it as well.
Now, if two words have the same letter at the same position, we can simply keep
them as it is and let it go.
If they are different, say x and y we have some options.
editDistance :: String -> String -> Int
editDistance "" s2 = length s2 * 2 -- Cost of inserting all

characters of s2
editDistance s1 "" = length s1 * 2 -- Cost of deleting all

characters of s1
editDistance (x:xs) (y:ys)

| x == y = editDistance xs ys -- No cost if last
characters are the same

| otherwise = minimum [ insertCost , deleteCost , replaceCost
]

where
insertCost = editDistance (x:xs) ys + 2 -- Insert y

before x in x:xs
deleteCost = editDistance xs (y:ys) + 2 -- Delete x

from x:xs
replaceCost = editDistance xs ys + 1 -- Replace x

with y

With our naive solution in place, we can use the logic from LCS problem to get
the following code.
editDistance :: String -> String -> Int
editDistance s1 s2 = go (length s1) (length s2)

where
go 0 j = 2*j -- Cost of inserting all characters of s2
go i 0 = 2*i -- Cost of deleting all characters of s1
go i j

| s1 !! (i-1) == s2 !! (j-1) = go (i-1) (j-1) -- No
cost if last characters are the same

| otherwise = minimum [ go i (j-1) + 2, -- Insertion
cost
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go (i-1) j + 2, -- Deletion
cost

go (i-1) (j-1) + 1 --
Substitution cost

]

And from here, getting to a DP is just making the memo.

editDistance :: String -> String -> Int
editDistance s1 s2 = go m n

where
m = length s1
n = length s2
go 0 j = 2*j -- Cost of inserting all characters of s2
go i 0 = 2*i -- Cost of deleting all characters of s1
go i j

| s1 !! (i-1) == s2 !! (j-1) = gom !! (i-1) !! (j-1)
-- No cost if last characters are the same

| otherwise = minimum [ gom !! i !! (j-1) + 2, --
Insertion cost

gom !! (i-1) !! j + 2, --
Deletion cost

gom !! (i-1) !! (j-1) + 1 --
Substitution cost

]
gom = [[go i j | j <- [0..n]] | i <- [0..m]]

Time Complexity

The naive cases both have a time complexity of O
(
3min(m,n)

)
where m

and n are the length of the words.
The DP case brings the time-complexity down to O(m ∗ n).

5 Partitions

Problem

Given a set of integers, the task is to divide it into two sets S1 and S2
such that the absolute difference between their sums is minimum.
If there is a set S with n elements, then if we assume Subset1
has m elements, Subset2 must have n-m elements and the value of
abs(sum(Subset1) – sum(Subset2)) should be minimum.
Examples
Input: [1, 6, 11, 5]
Output: 1
Explanation: S1 = [1, 5, 6], sum = 12, S2 = 11, sum = 11,
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Absolute Difference (12 – 11) = 1
Input: [1, 5, 11, 5]
Output: 0
Explanation: S1 = [1, 5, 5], sum = 11, S2 = [11], sum = 11,
Absolute Difference (11 – 11) = 0

Here instead of a string we have been given a list of integers. Our stratergy,
however, remains the same.
The naive code at every index considers what would happen if the element at
that index would be in S1 or S2 and takes the case which reduces the difference
between sums.
We are basically generating all the subsets of the given list.

minSum :: [Int] -> Int
minSum [] = 0
minSum [a] = a
minSum xs = go (length xs - 1) 0

where
sumTotal = sum xs
go :: Int -> Int -> Int
go 0 h = abs (2*h - sumTotal)
go n h = min (go (n-1) (h+ (xs !! n))) (go (n-1) h)

Memmoizing it is just a formality from here.

minSum :: [Int] -> Int
minSum [] = 0
minSum [a] = a
minSum xs = gom !! (length xs - 1) !! 0

where
sumTotal = sum xs
go :: Int -> Int -> Int
go 0 h = abs (2*h - sumTotal)
go n h = min (gom !! (n-1) !! (h+ (xs !! n))) (gom !! (n-1)

!! h)
gom = [[go n h | h <- [0..]]| n <- [0..]]

A harder question here would be about the time complexity of the memoized
code.

Time Complexity

An rather simple way of guessing the worst case time complexity (the
O thingy) of a memoized code is to look at the number of elements in
the memoized list. Basically, we may have some worst case where every
element is accessed.
Note: This works as calculating each entry in memo takes constant time
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due to memoization and we can ’ignore’ constents in time complexity.
You can confirm that this is true for all the codes we saw till now.
However, this doesn’t work here as we are dealing with an infinite list
of infinite list. The above method would indicate that this code never
terminates, which is obviously untrue. So what do we do here?
In this case, we ask till where can we actually generate the lists?
h is at worst equal to sum of all elements of the given list. n is at worst
equal to the number of elements in the list.
This gives us the time complexity O(n ∗ S) where n is the number if
elements in the list and S is the sum of these elements.

6 0-1 Knapsack

Problem

Given N items where each item has some weight and profit associated
with it and also given a bag with capacity W , [i.e., the bag can hold at
most W weight in it]. The task is to put the items into the bag such that
the sum of profits associated with them is the maximum possible.

Possibly the most famous problem in DP. The naive solution

knapsack :: [(Int, Int)] -> Int -> Int
knapsack [] _ = 0
knapsack _ 0 = 0
knapsack ((a,b):xs) w

| w < a = knapsack xs w -- Item can't be included if its
weight is more than available capacity

| otherwise = max (b + knapsack xs (w - a)) (knapsack xs w)

Making it better is equally simple

knapsack :: [(Int, Int)] -> Int -> Int
knapsack xs bag = go (length xs) bag where

weights = map fst xs
values = map snd xs
go :: Int -> Int -> Int
go 0 _ = 0
go _ 0 = 0
go i w

| w < (weights !! (i-1)) = dp !! (i-1) !! w
| otherwise = max (values !! (i-1) + dp !! (i-1) !! (w

- weights !! (i-1)))
(dp !! (i-1) !! w)

dp = [ [ go i w | w <- [0..bag] ] | i <- [0..(length xs)] ]
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So why did we even study this simple thing? Because Knapsack is not a single
problem, it is a class of problems. We can solve a lot of problems by making only
cosmetic changes to this algorithm. Two famous examples are left as exercise.

Problem

Given a rod of length n inches and and a list of prices that includes
prices of all pieces of size smaller than n. Determine the maximum value
obtainable by cutting up the rod and selling the pieces. We are mainly
given a price array such that the size of the price array is the same as
rod length, and price !! i represents the price of length i+ 1.
Input: price = [1, 5, 8, 9, 10, 17, 17, 20], length = 8
Output: 22
Explanation: The rod length is 8, and the values of different pieces are
given as follows:

Length 1 2 3 4 5 6 7 8
Price 1 5 8 9 10 17 17 20

The maximum obtainable value is 22 (by cutting the rod as 8 = 2 + 6)

Problem

Given an list coins representing different types of denominations and an
sum, the task is to count all combinations of coins to make a given value
sum.
Note: Assume that you have an infinite supply of each type of coin.
Examples:
Input: sum = 4, coins = [1,2,3]
Output: 4
Explanation: there are four solutions: 1+ 1+1+1; 1+ 1+2; 2+ 2; 1+ 3
Input: sum = 10, coins = [2, 5, 3, 6]
Output: 5
Explanation: There are five solutions: 2+2+2+2+2; 2+ 2+3+3; 2+
2 + 6; 2 + 3 + 5; 5 + 5
Input: sum = 10, coins = [10]
Output: 1
Explanation: The only is to pick 1 coin of value 10.
Input: sum = 5, coins = [4]
Output: 0
Explanation: We cannot make sum 5 with the given coins
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7 A Game

Problem

Consider a row of N coins of values V1, . . . , Vn, where N is even. We
play a game against an opponent by alternating turns. In each turn, a
player selects either the first or last coin from the row, removes it from
the row permanently, and receives the value of the coin. Determine the
maximum possible amount of money we can definitely win if we move
first.
Note: The opponent is as clever as the user.
Example:
Input: [5, 3, 7, 10]
Output: 15 -> (10 + 5)
Input: [8, 15, 3, 7]
Output: 22 -> (7 + 15)

This problem will require us to work a bit more creatively.
Instead of making two functions, one to model our move and the other to model
the opponents moves, we can make a singular function. This is a zero-sum game
That means, our opponents best move is one which reduces our ideal payoff. So
I only need to think of our move.
Doing so naively looks like

payOut :: [Int] -> Int
payOut [] = 0
payOut [a] = a
payOut xs = go 0 (length xs - 1) -- Here the second and third

arguments are just the indexes we start and end at
where

go i j
| i > j = 0
| i == j = xs !! i
| otherwise = let
takeFirst = xs !! i + min (go (i+2) j) (go (i+1) (j

-1)) -- The opp may take from the front or the
back. As they play optimally , they try to
minimize our winnings.

takeLast = xs !! j + min (go (i+1) (j-1)) (go i (j
-2)) in

max takeFirst takeLast

The memoization will take a bit more creativity here. Direct memoization
creates errors as i+2, j-1 or j-2 may not be a logical index.
So what do we do? Create another function to ensure safe access of the list.

payOut :: [Int] -> Int
payOut [] = 0
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payOut [a] = a
payOut xs = go 0 (length xs - 1) -- Here the second and third

arguments are just the indexes we start and end at
where

go i j
| i > j = 0
| i == j = xs !! i
| otherwise = let

takeFirst = xs !! i + min (safeAccess (i+2) j) (
safeAccess (i+1) (j-1))

takeLast = xs !! j + min (safeAccess (i+1) (j-1)) (
safeAccess i (j-2))

in
max takeFirst takeLast

gom = [[go i j | j <- [0..(length xs - 1)]] | i <- [0..(
length xs - 1)]]

safeAccess :: Int -> Int -> Int
safeAccess i j

| i > j = 0
| i == j = xs !! i
| otherwise = gom !! i !! j

Finally, our code happens to have yet another optimization, we can store the
data of the game in double accessed list or a ’dequeue’.
While this doesn’t change the asymptotic complexity (the O thingy) it does
make it better on average for obvious reasons.
While utilizing is left as exercise, we have included the code for dequeue at the
end.

8 Google Interview: Subset Sum

Problem

Given a list of integers S and a target number k, write a function that
returns a subset of S that adds up to k. If such a subset cannot be made,
then return Nothing.
Integers can appear more than once in the list. You may assume all
numbers in the list are positive.
For example, given S = [12, 1, 61, 5, 9, 2] and k = 24, return
[12, 9, 2, 1] since it sums up to 24.

This question was asked in a google interview and was considered hard by a
good bunch of people.
Let’s hope you don’t end up joining that bunch.
The naive solution is slightly difficult to get directly, so here is my attempt to
explain it with comments.
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subset :: [Int] -> Int -> Maybe [Int]
-- Base case: if `k` is 0, the subset is empty (since the sum

of an empty subset is 0)
subset _ 0 = Just []
-- Base case: if the list is empty but `k` is not 0, no valid

subset can be found
subset [] _ = Nothing
-- Main recursive case: try to find a subset by invoking the

helper function `go`
subset s k = go s k []

where
-- Helper function `go` performs the actual recursive

search
-- `go s k ans` will return `Just ans` if a subset

summing to `k` is found
-- `s` is the remaining list of integers to consider
-- `k` is the target sum we are trying to achieve
-- `ans` is the current list of integers that form a

partial subset
go [] 0 ans = Just ans -- If we've successfully summed

up to 0, return the current subset
go [] _ _ = Nothing -- If the list is empty but we

haven 't reached 0, return Nothing (no valid subset)

-- Recursive case: consider each element of the list `s
` (starting from `x:xs`)

go (x:xs) k ans
-- If `k` is negative , we have gone over the target

, so return Nothing
| k < 0 = Nothing
-- Check if it's possible to find a subset by

excluding `x` (don't add `x` to `ans `)
-- This checks the "without the current element"

scenario by calling `go xs k ans`
-- If that returns `Nothing `, proceed to try adding

`x` to `ans` and call `go xs (k - x) (x : ans)`
| go xs k ans == Nothing = go xs (k - x) (x : ans)
-- If the previous step fails , just keep the subset

as is and continue with the next elements
| otherwise = go xs k ans

And for your viewing pleasure, here is the code without the comments.
subset :: [Int] -> Int -> Maybe [Int]
subset _ 0 = Just []
subset [] _ = Nothing
subset s k = go s k []

where
go [] 0 ans = Just ans
go [] _ _ = Nothing
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go (x:xs) k ans
| k < 0 = Nothing
| go xs k ans == Nothing = go xs (k-x) (x:ans)
| otherwise = go xs k ans

So how do we memoize this? Clearly, we work with the index of elements of s.
The naive, dp-able, version is

join :: a -> Maybe [a] -> Maybe [a]
join _ Nothing = Nothing
join x (Just xs) = Just (x:xs)

subset :: [Int] -> Int -> Maybe [Int]
subset _ 0 = Just []
subset [] _ = Nothing
subset s k = go (length s) k

where
go _ 0 = Just []
go 0 _ = Nothing
go i j

|j < 0 = Nothing
|go (i-1) j == Nothing = let x = s !! (i-1) in join x

(go (i-1) (j-x))
|otherwise = go (i-1) j

And then we memoize it and secure a ’hypothetical’ job at google

join :: a -> Maybe [a] -> Maybe [a]
join _ Nothing = Nothing
join x (Just xs) = Just (x:xs)

subset :: [Int] -> Int -> Maybe [Int]
subset _ 0 = Just []
subset [] _ = Nothing
subset s k = go (length s) k

where
go _ 0 = Just []
go 0 _ = Nothing
go i j

|j < 0 = Nothing
|gom !! (i-1) !! j == Nothing = let x = s !! (i-1) in

if (j-x) > 0 then join x (gom !! (i-1) !! (j-x))
else Nothing

|otherwise = gom !! (i-1) !! j
gom = [[go a b | b <- [0..k]]| a <- [0..(length s)]]
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9 When not to memoize...

Problem

The following iterative sequence is defined for the set of positive integers:
n → n/2 (n is even)
n → 3n+ 1 (n is odd)
Using the rule above and starting with 13, we generate the following
sequence:

13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1.

It can be seen that this sequence (starting at 13 and finishing at 1) con-
tains 10 terms. Although it has not been proved yet (Collatz Problem), it
is thought that all starting numbers finish at 1. Which starting number,
under some input N , produces the longest chain?
NOTE:Once the chain starts the terms are allowed to go above N .

This question starts like any other, we start by simply writing a naive code.
colletz :: Int -> Int
colletz n = snd (maximum [(colletzLength x , x) | x <- [1..n]])

where
colletzLength 1 = 0
colletzLength a = if even a then 1 + colletzLength (a `

div` 2) else 1 + colletzLength (3*a + 1)

Time Complexity

While we can’t really say much about the time complexity here as the
Colletz conjuncture is unsolved at the moment.
And the closed form of length of colletz chain is still another issue.
So what do we do here?
Each call to colletzLength can be thought of as having a complexity
that might be close to O(log a) on average for many numbers, but this
can vary greatly.
This is not a very good approximation, we are guessing way below. But
what else can we do?
Since colletz calls colletzLength for every number up to n, we can
simply say all numbers cause log n amount of operations.
Thus, in practice, the overall time complexity can be estimated as:

O(n · log n)

This is a rough estimate that assumes each call to colletzLength on
average takes O(log n) time, leading to a total of O(n · log n).
NOTE: The actual time can vary significantly based on the character-
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istics of the Collatz sequence for each number, and while O(n log n) is a
reasonable estimate, the worst-case behavior could be worse due to the
undefined behavior of the sequence lengths for larger inputs.

As O(n · log n) is anyhow a good time-complexity, one can estimate this code to
work till some point. And it indeed does work for even a million.
However, can we make it much better by memoization?

colletz :: Int -> Int
colletz n = snd (maximum [(colletzLength x , x) | x <- [1..n]])

where
colletzLength 1 = 0
colletzLength a = if even a then 1 + colletzLengthm !!

(a `div` 2 - 1) else 1 + colletzLengthm !! (3*a)
colletzLengthm = [colletzLength x | x <- [1..]]

But surprise, surprise, this only works till 9500.

Time Complexity

The memoization makes the colletzLength a O(n) operation. This
makes colletz an n ∗O(n) = O(n2) process.

So what do we do? We don’t memoize all the time.
In case of colletz, memoization doesn’t really help as it is already on an average
an O(log n) operation.

Idea

Memoization works to bring exponential time complexity down to poly-
nomial.
Memoization will never give something sub-linear.
Do not memoize things which are already sub-linear. It won’t end well.

10 Why does this handout exist?
Mainly as I was somewhat sad that most people, including my batch mates,
TAs and most of the internet dispised DP in haskell.
One of the first things I noticed while trying out the class examples was the
technique of lists detailed in this handout. I was somewhat shocked to not find
a good treatment of this technique anywhere else (the only somewhat decent
one being the one on Haskell wiki). So I decided to make this handout.
Every other place and person was quick to jump to arrays or maps or monads or
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the memo package which is basically overkill for most DP problems.This frus-
trated me even more eventually motivating me to speand way more time than
neccesary on this.
The problems covered were from the Geek For Geek list of ”Top 20 Dynamic
Programming Interview Questions”. This source was chosen to illustrate that
the most popular problems are easily doable.

I hope you enjoyed this short journey through list only DP. As a great
man once said, this is the hack job by a novice. Please feel free to use or
discard any part of this. If possible, report any errors or feedback to ar-
juna.ug2024@cmi.ac.in.
Thanks for reading.
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Appendix: Dequeue

data Deque a = Deque [a] [a]
emptyDeque :: Deque a
emptyDeque = Deque [] []

-- Add an element to the front
pushFront :: a -> Deque a -> Deque a
pushFront x (Deque front back) = Deque (x:front) back

-- Add an element to the back
pushBack :: a -> Deque a -> Deque a
pushBack x (Deque front back) = Deque front (x:back)

-- Remove an element from the front
popFront :: Deque a -> Maybe (a, Deque a)
popFront (Deque [] []) = Nothing -- empty deque
popFront (Deque (x:xs) back) = Just (x, Deque xs back)
popFront (Deque [] back) = popFront (Deque (reverse back) [])

-- Remove an element from the back
popBack :: Deque a -> Maybe (a, Deque a)
popBack (Deque [] []) = Nothing -- empty deque
popBack (Deque front (x:xs)) = Just (x, Deque front xs)
popBack (Deque front []) = popBack (Deque [] (reverse front))
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