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Computational Social Science



Introduction
• Social Science is the study of societies and the relationships among

members within those societies. We often have anthropology, archaeology,
economics, geography, history, linguistics, management, communication
studies, psychology, culturology, and political science.

• Decision theory or Choice Theory, at the heart of it, is the math of
modeling real-life scenarios and optimizing decision-making. It deals with
financial markets and elections, fairness and moral hazard, auctions and
corruption; everywhere a decision is to be made, decision theory enters.

• Computer Science is, at the heart of it, concerned with which problems can
we solve and how fast can we solve them. Some branches also deal with the
question of how well can we approximate the answer or given some
solution, solve another problem. These problems are generally
mathematical in nature.

Thus,
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Introduction (ii)

Social Science ⟶
Decision Theory

Computer Science

The image under this function is referred to as “Computational Social
Science” or “Computational Social Choice” aka COMSOC.
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Voting Theory
• Treating voting rules as an algorithm
• While this may seem like an oblivious idea, it was quite a revolutionary

idea 30 years back.
• Furthermore, this acts like a five year old idea. We will see a lot of rather

common things which are open.
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Let’s Begin



Voting Theory (iii)
Definition 1: The Vote Aggregation Problem.
Problem: Given 𝑛 alternatives, and 𝑣 voters, each with an preference
ordering on the alternatives, aggregate them into either
1. a “winner” or winners, or
2. a total ordering of the alternatives (where the “winner” is the first in the

ordering).
Clearly a huge number of voting rules satisfies this definition.

However, most of them are not decisive, fair and ‘practical’.
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Anonymity, Neutrality and Monotonicity
Definition 2.
• A voting rule is anonymous if it treats all of the voters equally, meaning

that if any two voters traded votes, the outcome of the election would
remain the same.

• A voting rule is neutral if it treats all the candidates equally, meaning
that if every voter switched them on their votes, the outcome of the
election would change accordingly.

• A voting rule is monotone if it is impossible for a candidate to become
rated worse in the societal ordering by gaining votes (or moving above in
the rankings of the voters).

A weaker version of Monotonicity is called Unanimity.
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Anonymity, Neutrality and Monotonicity (ii)
Corollary 1.
A voting system is unanimous if whenever every voter prefers candidate 𝑐
to 𝑑, then 𝑑 is not the winner (and is ranked below 𝑐 in the societal
ordering).
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Fairness
I will now propose a conditions which I believe everyone will agree are
desirable

Definition 3.
• Independence of Irrelevant Alternatives: A voting system satisfies

independence of irrelevant alternatives if the decision of 𝑐 versus 𝑑
depends only on the relative ranking of 𝑐 and 𝑑 in the voter preference
profiles.

Congratulations! We have just walked into an impossibility.

Theorem 1: Arrow's Theorem.
The only voting rule that satisfies Unanimity and Independence of
Irrelevant Alternatives is Dictatorship

A proof for this was presented by Krutarth Shah in his seminar. I will not be
sharing a proof for it today, but it is a relativly nice proof and hopefully
everyone can google it in their time.
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Practicality
• How quickly can we determine the result under a particular voting rule? 𝑛

candidates, 𝑣 voters.

• For Plurality: It is 𝒪(𝑛)

• For Borda (and other scoring rules): It is 𝒪(𝑛𝑣)

• For STV: It is 𝒪(𝑛2)

Note, even larger polynomial algorithms are also not really practical. In a
nation as big as India, an election with complexity say 𝒪(𝑣4) would be too
slot to run.
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Impracticality Theorem
An axiom which seems rather innocuous is

Definition 4: Consistency.
Consistency: A voting system is consistent if, when two disjoint sets of
voters agree on a candidate 𝑐, the union of voters will also choose 𝑐.

Formally, if 𝐴, 𝐵 are the set of voters and 𝑓  is a voting rule satisfying
consistency then 𝐴 ∩ 𝐵 = ∅, 𝑓(𝐴) ∩ 𝑓(𝐵) ≠ ∅ ⇒ 𝑓(𝐴 ∪ 𝐵) = 𝑓(𝐴) ∪
𝑓(𝐵).

but this leads to:

Theorem 2: BTT (Bartholdi, Tovey, and Trick) Impracticality Theorem.
For any voting system that satisfies
(a) neutrality
(b) consistency
(c) Condorcet winner
it is NP-Hard to determine the winner.
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Impracticality Theorem (ii)
Proof.

Definition 5: Kemeny's Rule.
Kemeny Rule selects the ordering that is “closest” to the voters’ preferences.

Formally,

𝑓({𝑝1, 𝑝2, …, 𝑝𝑣}) = arg min
𝜎∈ perm(𝑛)

∑
𝑖∈[𝑣]

KT(𝜎, 𝑝𝑖)

where KT(𝜎, 𝜏) = |{(𝑎, 𝑏) | 𝑎, 𝑏 ∈ [𝑛], 𝑎 > 𝑏 ∈ 𝜎, 𝑏 > 𝑎 ∈ 𝜏}|.
As multiple permutations can be the Kemeny orderings, we don’t really
tiebreak and let the output be a set.
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Impracticality Theorem (iii)
Lemma 1: (HP Young and Levenglick).
The only voting system that satisfies
(a) neutrality
(b) consistency
(c) Condorcet winner
is Kemeny Rule.

Lemma 2: (Bartholdi, Tovey, and Trick).
Kemeny score is NP-complete, and Kemeny ranking and Kemeny winner
are NP-hard.

It is easy to see how the these lemmas lead to the claimed theorem. The proof
for both is in the appendix.
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Manipulation



Example
• Consider an election with three alternatives, 𝑎, 𝑏 and 𝑐,and three voters, 1, 2

and 3.
• Suppose the rule used is plurality with ties broken toward alternatives

earlier in the alphabet.
• Suppose voter 3 knows (or strongly suspects) that voter 1 will rank 𝑎 first

in her vote, and that voter 2 will rank 𝑏 first. Voter 3’s true preferences are
𝑐 ≻ 𝑏 ≻ 𝑎.

• If she votes truthfully, this will result in a three-way tie, broken in favor of
𝑎 which is 3’s least preferred alternative. If, instead, voter 3 ranks 𝑏 first,
then 𝑏 will win instead. Hence, voter 3 has an incentive to cast a vote that
does not reflect her true preferences.

Here 3 has misrepresented her true preferences to affect the outcome of the
election. This is called a ‘manipulation’.
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Two Negative Results
Theorem 3: Gibberd-Satterwaite.
Consider a (resolute) voting rule that is defined for some number 𝑚 of
alternatives with 𝑚 ≥ 3, with no restrictions on the preference domain.
Then, this rule must be at least one of the following:
• Dictatorial: there exists a single fixed voter whose most-preferred

alternative is chosen for every profile;
• Imposing: there is at least one alternative that does not win under any

profile;
• manipulable (i.e., not strategyproof).

The proof is quite similar to Arrow’s case bash proof. We will omit it for
brevity.
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A ray of hope
As we saw, even finding the winner to an fair election can be hard. That
means, once could reasonably expect there to be election rules where finding
the manipulation is NP hard.
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Manipulation Problem
Given A profile Π of votes cast by everyone else and the preferred alternative
𝑎, can we vote in a way so that 𝑎 wins?

Definition 6: BTT Voting Rules.
We say a voting rule is BTT if
1. it can be run in polynomial time
2. for every Π and every alternative it assigns a score 𝑆(Π, 𝑎) to 𝑎.
3. For every profile Π, the maximum scoring alternative wins.
4. For any Π and Π′ and alternative 𝑎, if {𝑏 : 𝑎 ≻

𝑖
𝑏} ⊆ {𝑏 : 𝑎 ≻′

𝑖
𝑏} for

every voter 𝑖, then 𝑆(Π, 𝑎) ≤ 𝑆(Π′, 𝑎).

Theorem 4: Manipulation of BTT .
The Manipulation problem can be solved in polynomial time for any BTT
rule.

The answer is literally the greedy algorithm.
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Manipulation Problem (ii)

Function FindManipulativeVote(alternatives, profile, a,
scoring_function):
    vote = []               
    vote.append(a)

    remaining_alternatives = alternatives.remove(a)
    
    while remaining_alternatives is not empty:
        manipulation_found = False

        for b in remaining_alternatives:
            temp_vote = vote.copy()
            temp_vote.append(b)
            temp_vote += (remaining_alternatives - {b})

            S_a = scoring_function(a, profile + [temp_vote])
            S_b = scoring_function(b, profile + [temp_vote])
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Manipulation Problem (iii)

            if S_a > S_b:
                vote.append(b)
                remaining_alternatives.remove(b)
                manipulation_found = True
                break   // Proceed to next rank position

        if not manipulation_found:
            Report("Manipulation is not possible.")
            return None
    return vote

What about some natural rules that don’t come under the BTT?
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Manipulation Problem (iv)
Definition 7: Copeland.
The Copeland score of a candidate is the number of pairwise contests won
minus the number lost.

The Second order Copeland score of a candidate is the sum of the Copeland
scores of each defeated candidate.

We define n-Copeland score in a similar fashion. We define n-Copeland rule
as choosing the candidate with highest n-Copeland score.

While first order Copeland clearly is BTT, second order is not. And in
Appendix B, you can see a reduction from SAT to second Copeland.

Similarly, a big favorite in the community,
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Manipulation Problem (v)
Definition 8: Single Transferable Vote.
At each stage, the alternative with lowest plurality score is dropped from all
ballots, and at the first stage for which some alternative 𝑥 sits atop a
majority of the ballots, 𝑥 is declared the winner.

is also NP hard to manipulate by a very similar proof to Copeland.
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Coalition of Manipulators
Here is the thing, running a random analysis will give one that in most cases,
a single voter can’t really manipulate the election. This is increasingly
unlikely as the number of voters increase. Just as no con happens alone, what
if the election is to be stolen by a group?

Well, the cooperation makes it much harder here.

Theorem 5.
Unweighted coalition manipulation for the Borda rule is NP-complete with
two manipulators.
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Coalition manipulation of Borda in in NP
Proof We will show a reduction from Permutation Sum problem.

Definition 9: Permutation Sum.
Given 𝑛 integers 𝑋1 ≤ 𝑋2 ≤ … ≤ 𝑋𝑛 where ∑𝑛

𝑖=1 𝑋𝑖 = 𝑛(𝑛 + 1), does
there exist two permutations 𝜎 and 𝜋 of 1…𝑛 such that 𝜎(𝑖) + 𝜋(𝑖) = 𝑋𝑖
for 1 ≤ 𝑖 ≤ 𝑛.

Let the candidates be in favor of candidate 1 and say the tie break favors
candidate 1.

Lemma 3.
Given integers 𝑋1 to 𝑋𝑚, there exist votes over 𝑚 + 1 candidates and a
constant 𝐶 such that the final score of candidate 𝑖 is 𝑋𝑖 + 𝐶 for 1 ≤ 𝑖 ≤ 𝑚
and for candidate 𝑚 + 1 is 𝑦 ≤ 𝐶 .

Proof We show how to increase the score of a candidate by 1 more than the
other candidates except for the last candidate whose score increases by 1 less.
For instance, suppose we wish to increase the score of candidate 1 by 1 more
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Coalition manipulation of Borda in in NP (ii)
than candidates 2 to 𝑚 and by 2 more than candidate 𝑚 + 1. Consider the
following pair of votes:

1 > 𝑚 + 1 > 2 > … > 𝑚 − 1 > 𝑚
𝑚 > 𝑚 − 1 > … > 2 > 1 > 𝑚 + 1

The score of candidate 1 increases by 𝑚 + 1, of candidates 2 to m by 𝑚, and
of candidate m + 1 by 𝑚 − 1. By repeated use of this, we can achieve the
result we desire. ∎

Using the Lemma, we can construct the non-manipulators such that the score
vector is

⟨𝐶, 2(𝑛 + 2) − 𝑋1 + 𝐶, …, 2(𝑛 + 2) − 𝑋𝑛 + 𝐶, 2(𝑛 + 2) + 𝐶, 𝑦⟩

We claim two manipulators can make candidate 1 win if and only if the
permutation sum problem has a solution.

(⇒) As a permutation sum exists, the manipulators can vote as:
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Coalition manipulation of Borda in in NP (iii)
⟨𝑛 + 2, 𝜎(1), …, 𝜎(𝑛), 0, 𝑛 + 1⟩
⟨𝑛 + 2, 𝜋(1), …, 𝜋(𝑛), 0, 𝑛 + 1⟩

getting the score to:

⟨2(𝑛 + 2) + 𝐶, 2(𝑛 + 2) + 𝐶, …, 2(𝑛 + 2) + 𝐶, 2(𝑛 + 1) + 𝑦⟩

and thus, getting candidate 1 to win.

(⇐) To ensure candidate 1 beats candidate 𝑛 + 2, both manipulators must put
candidate 1 in first place and the latter in last.

Candidate 1 in future is above the 𝑖 + 1-th candidate by 𝑋𝑖 votes where
∑𝑛

𝑖=1 𝑋𝑖 = 𝑛(𝑛 + 1). This means that if any of them get the score addition of
𝑛 + 1, candidate 1 will lose. So, 𝑛 + 1 scores will have to go to the last (and
least dangerous) candidate.

This makes the manipulated votes of the form
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Coalition manipulation of Borda in in NP (iv)
⟨𝑛 + 2, 𝜎(1), …, 𝜎(𝑛), 0, 𝑛 + 1⟩
⟨𝑛 + 2, 𝜋(1), …, 𝜋(𝑛), 0, 𝑛 + 1⟩

where 𝜎 and 𝜋 are permutations of 1…𝑛. To ensure candidate 1 beats
candidate 𝑖 + 1, we must have 𝜎(𝑖) + 𝜋(𝑖) ≤ 𝑋𝑖. Since ∑𝑛

𝑖=1 𝜎(𝑖) = 𝑛(𝑛+1)
2

and ∑𝑛
𝑖=1 𝜋(𝑖) = 𝑛(𝑛+1)

2 ; we must have 𝜎(𝑖) + 𝜋(𝑖) = 𝑋𝑖.

This means, we have a solution of the permutation sum problem. ∎

Similar proofs hold for Copeland etc.
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Control



Definitions
As manipulation is the voters trying to, well, manipulate the election; Control
refers to the people in power, called chair, trying to, well, control the election
by adding or removing voters or candidates.

Definition 10: Constructive Control by Adding an Unlimited Number of
Candidates.
Let 𝑓  be a voting rule. In the Constructive Control by Adding an Unlimited
Number of Candidates problem for 𝑓  (𝑓-CCAUC), we are given:
1. A set 𝐴 of qualified candidates, a set 𝐵 of spoiler candidates, where 𝐴 ∩

𝐵 = 𝜑, and an election (𝐴 ∪ 𝐵, 𝑅).
2. A preferred candidate 𝑝 ∈ 𝐴.
We ask if we can choose a subset 𝐵′ ⊆ 𝐵 of the spoiler candidates such
that 𝑝 is the unique 𝑓-winner of the election (𝐴 ∪ 𝐵′, 𝑅).
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Definitions (ii)
Definition 11: Constructive Control by Adding Candidates.
Constructive Control by Adding Candidates problem for 𝑓  (𝑓-CCAC) is
defined similarly: In addition to (1) and (2) we are also given (3) a bound
𝑘 ∈ ℕ, and we ask if there is a subset 𝐵′ ⊆ 𝐵 of spoiler candidates such
that |𝐵′| ≤ 𝑘 and 𝑝 is the unique 𝑓-winner of (𝐴 ∪ 𝐵′, 𝑅).

Definition 12: Constructive Control by Deleting Candidates.
In the Constructive Control by Deleting Candidates problem for 𝑓  (𝑓-
CCDC), we are given :
1. An election (𝐴, 𝑅).
2. A preferred candidate 𝑝 ∈ 𝐴.
3. A bound 𝑘 ∈ ℕ.
We ask if 𝑝 can be made a unique 𝑓-winner of the election resulting from
(𝐴, 𝑅) by deleting at most 𝑘 candidates.

32/81



Definitions (iii)
Definition 13: Constructive Control by Adding Voters.
Let 𝑓  be a voting rule. In the Constructive Control by Adding Voters
problem for 𝑓  (𝑓-CCAV), we are given:
1. a list 𝑅 of already registered votes, a list 𝑆 of as yet unregistered votes,

and an election (𝐴, 𝑅 + 𝑆), where “profile addition” means
concatenation of profiles.

2. A preferred candidate 𝑝 ∈ 𝐴.
3. A bound 𝑘 ∈ ℕ.
We ask if we can choose a sublist 𝑆′ ⊆ 𝑆 of size at most 𝑘 such that 𝑝 is the
unique 𝑓-winner of (𝐴, 𝑅 + 𝑆′).
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Definitions (iv)
Definition 14: Constructive Control by Deleting Voters.
In the Constructive Control by Deleting Voters problem for 𝑓  (𝑓-CCDV), we
are given:
1. An election (𝐴, 𝑅).
2. A preferred candidate 𝑝 ∈ 𝐴
3. A bound 𝑘 ∈ ℕ.
We ask if we can make 𝑝 a unique 𝑓-winner of the election resulting from
(𝐴, 𝑅) by deleting no more than 𝑘 votes.

We are interested in these forms of control as they are quite common. From
the Bush elections where Nader was a spoiler candidate to Miller (2008)
showing that enfranchisement of woman voters (in many nations) was
beneficial for candidates who wanted to increase spending on Infant Health.

We also see this in the papal conclave where Pope Paul VI brought the rule
that cardinals above 80 may not participate in the conclave; effectively
disenfranchising a lot of the conservative cardinals appointed by Pope John
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Definitions (v)
XXIII and Pius XII. We also saw this in the 2025 papal conclave where Pope
Francis controlled the election from beyond the veil as he appointed 110
cardinals (of the 135 candidates and voters).

Definition 15: Immunity and Susceptibility.
Depending on the voting rule, it may never (for no preference profile at all)
be possible for the chair to successfully exert some control action (e.g.,
constructive control by deleting voters) in the sense that 𝑝 can be turned
(by deleting voters) from not being a unique winner into being one. If that
is the case, we say this voting rule is immune to this type of control.

Otherwise (i.e., if there is at least one preference profile where the chair can
successfully exert this control action), we say this voting rule is susceptible
to this type of control.
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Definitions (vi)
Definition 16: Vulnerability and Resistance.
𝑓  is said to be vulnerable (respectively, resistant) to this control type if
the corresponding problem (e.g., f-CCAV) is in P (respectively, NP-hard).
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Analysis
Immunity appears to be very desirable.

However, Immunity for candidate control is rare. This is due to the study of
candidate-voter models.

We can consider a setting where the candidates have preferences regarding
election outcomes, and can strategically choose to join the race or not. For
most typical election rules there are settings where some candidates would
prefer not to participate in the election. In effect, such rules cannot be
immune to candidate control. Nonetheless, in some rare cases (Condorcet and
approval voting) immunity results for candidate control hold.

For the case of voter control, immunity is not only rare, but also is utterly
undesirable. Indeed, it is natural to expect that if we add sufficiently many
voters with the same preference order, then their most preferred candidate
becomes a winner.
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Some Results
Theorem 6.
1. Condorcet and approval voting are immune and plurality is resistant to

constructive control by adding (respectively, adding an unlimited
number of) candidates.

2. Condorcet and approval voting are vulnerable and plurality is resistant
to constructive control by deleting candidates.

3. Condorcet and approval voting are resistant and plurality is vulnerable
to constructive control by both adding and deleting voters.

These results follow from the fact Condorcet and approval voting satisfy the
Weak Axiom of Revealed Preference, which states that a unique winner 𝑝 in a
set 𝐴 of alternatives always is also a unique winner among each subset
containing 𝑝.

The vulnerability claims follow from a simple greedy algorithm.

The resistance here follows from reduction from Exact Cover by 3 Sets.
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Some Results (ii)
Adding Voters: We will show reduction from exact 3 cover or X3C. Let 𝐵 =
{𝑏1, 𝑏2, …, 𝑏𝑚}, 𝑚 = 3𝑘 and 𝑆 = {𝑆1, 𝑆2, …, 𝑆𝑛} such that 𝑆𝑖 ⊂ 𝐵, |𝑆𝑖| = 3.

Take the candidates of an election to be 𝐵 ∪ {𝑤}. We want 𝑤 to win. We have
𝑘 − 2 franchised voters who approve of 𝑏1, …, 𝑏𝑚 and disapprove of 𝑤.

We have 𝑛 unregistered voters where for 1 ≤ 𝑖 ≤ 𝑛, 𝑣𝑖 approves of 𝑆𝑖 ∪ {𝑤}
and disapproves of everyone else.

We can enfrancish 𝑘 voters with ties broken against {𝑤} (that is in case of tie,
𝑤 loses).

(⟹) Simply enfranchising the 𝑘 voters that correspond to the exact cover for
𝐵 gets 𝑤’s score to 𝑘 and every 𝑏 ∈ 𝐵 has (𝑘 − 2) + 1 = 𝑘 − 1 score votes, so
𝑤 is the winner.
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Some Results (iii)
(⟸) Any addition which gets 𝑤 to win can only give 1 vote to another
candidate and we need to add 𝑘 voters. Thus, we will have to provide an exact
cover.

Deleting Voters: We will show reduction again from X3C. Let 𝐵 =
{𝑏1, 𝑏2, …, 𝑏𝑚}, 𝑚 = 3𝑘 and 𝑆 = {𝑆1, 𝑆2, …, 𝑆𝑛} such that 𝑆𝑖 ⊂ 𝐵, |𝑆𝑖| = 3.
For all 1 ≤ 𝑗 ≤ 𝑚, let 𝑙𝑗 denote the number of 𝑆, 𝑏𝑗 is an element of.

Take the candidates of the election of 𝐵 ∪ {𝑤}. We want 𝑤 to win.

We have 𝑛 voters such that for 1 ≤ 𝑖 ≤ 𝑛 such that 𝑣𝑖 approves of candidates
in 𝑆𝑖 and nobody else. We also have 𝑛 more voters such that for 1 ≤ 𝑖 ≤ 𝑛, 𝑣𝑖
approves of 𝑤 and 𝑏𝑗 if 𝑖 ≤ 𝑛 − 𝑙𝑗.

We can disfrancish 𝑘 voters with ties broken against {𝑤} (that is in case of
tie, 𝑤 loses).

Notice, in the initial election, all candidates have score 𝑛.
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Some Results (iv)
(⟹) If we have an exact cover, then we can disenfrancise the voters
corresponding to the cover, and thus, 𝑤 will have score 𝑛 and all other
candidates have 𝑛 − 1 score.

(⟸) Suppose that 𝑤 can be made the approval winner by deleting at most 𝑘
voters.

WLOG, we may assume that none of the deleted voters approves of 𝑤 (as
otherwise, adding them will also have 𝑤 win). So, we assume that only voters
corresponding to 𝑆𝑖’s have been deleted. For 𝑤 to have become winner, every
𝑏 ∈ 𝐵 must have lost at least one vote. It follows that the deleted voters
correspond to a cover, and since the cover has size at most 𝑘, this must be an
exact cover for 𝐵.
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Bribery



Bribery
Bribery is almost opposite to control as in this case it is not possible to affect
the structure of the election at hand (that is, the sets of candidates or voters
cannot be changed), but it is possible to change some of the votes instead.

The briber’s task has two main components. First, the briber needs to decide
who to bribe. Second, the briber has to decide how to change the chosen
votes. So in some way bribery combines a control-like action (picking which
voters to affect) with a manipulation-like action (deciding how to change the
selected votes).
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Definitions
We begin with a complete definition which we will add some more
constraints on them to make them more fit for algorithmic analysis.

Definition 17: Bribery Problem.
Let 𝑓  be a voting rule.

Input: An election (𝐴, 𝑅) with 𝑁 = {1, …, 𝑛} voters with preference
orders ≺

𝑖
 making up 𝑅, a preferred alternative 𝑝 ∈ 𝐴, a budget 𝐵 ∈ ℕ and a

collection of price functions Π = {𝜋1, …, 𝜋𝑛} where for each 𝑖, 1 ≤ 𝑖 ≤ 𝑛,
for each preference order ≺, 𝜋𝑖(≺) is the cost of convincing voter 𝑖 to cast
vote ≺. Note, 𝜋𝑖(≺

𝑖
) = 0

We ask if there is a preference profile 𝑅′ = (≺′
1

, …, ≺′
𝑛

) such that
𝑓(𝐴, 𝑅′) = 𝑝 and ∑𝑛

𝑖=1 𝜋𝑖(≺′
𝑖

) ≤ 𝐵.

The problem is that defining these cost functions will require quite a lot of
information.
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Definitions (ii)
Hence, there are 3 stipulations we consider:

Definition 18: Discrete Bribery.
∀1 ≤ 𝑖 ≤ 𝑛,

𝜋𝑖(≺) = {
0 if ≺=≺

𝑖
1 otherwise

Definition 19: Dollar Discrete Bribery.

𝜋𝑖(≺) = {
0 if ≺=≺

𝑖
𝑐𝑖 otherwise

Note: each voter can have a different 𝑐.
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Definitions (iii)
Definition 20: Swap Bribery.
1 ≤ 𝑖 ≤ 𝑛 and 𝑥, 𝑦 ∈ 𝐴, we define 𝑐𝑥,𝑦

𝑖  as the cost to switch these
candidates for voter 𝑖. Thus, 𝜋𝑖(≺) is the sum of all costs for 𝑥, 𝑦 ranked
opposite ≺

𝑖
.
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Results on Plurality
Theorem 7.
For plurality,
1. Bribery, Weighted Bribery and Dollar Bribery are each in P.
2. Weighted Dollar Bribery is NP-complete.
3. Swap Bribery is in P.

A simple greedy algorithm solves bribery and dollar bribery. Till budget lasts
or 𝑝 wins the election, change the vote of the cheapest to manipulate voter of
one of the winning candidates to 𝑝.

Unfortunately, such greedy approaches do not work for Weighted-Bribery.
For example, consider an algorithm that works in iterations and in each
iteration bribes the heaviest voter among those that vote for one of the
current winners.
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Results on Plurality (ii)
Let (𝐴, 𝑅) be an election where 𝐴 = {𝑝, 𝑎, 𝑏, 𝑐} and where we have nine
weight 1 voters voting for 𝑎, a single weight 5 voter voting for 𝑏, and a single
weight-5 voter voting for 𝑐.

Clearly, it suffices to bribe the two weight-5 voters, but the heuristic would
bribe five voters with weight 1 each.

On the other hand, bribing the heaviest voter first does not always work
either. Say 𝐴 = {𝑝, 𝑎, 𝑏}, 𝑝 receiving no votes at first, 𝑎 receiving three
weight-2 votes and one weight-1 vote, and 𝑏 receiving two weight-3 votes; to
make 𝑝 a winner it suffices to bribe one weight-2 vote and one weight-3 vote,
but the heuristic bribes three votes.

Nonetheless, a combination of these two heuristics does yield a polynomial-
time algorithm.
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Results on Plurality (iii)
The idea is to find an algorithm in P time using some parameter and then find
the parameter in P time as well. Here the parameter is the least amount of
points 𝑝 must end up with after the bribery is done. Let’s call it 𝑇 .

Naturally, all the other alternatives have to end up with at most 𝑇  points.
Thus, for each alternative a that has more than 𝑇  points, we should keep
bribing its heaviest voters until its score decreases to at most 𝑇  (this
corresponds to running the bribe the current winner’s heaviest voter heuristic).

If, after bringing each alternative to at most 𝑇  points, the preferred
alternative still does not have 𝑇  points, we bribe the globally heaviest voters
to vote for the preferred alternative. We do so until the preferred alternative
reaches at least T points (this corresponds to running the bribe the heaviest
voter heuristic).

For each alternative 𝑎, we bribe 𝑎’s voters in the order of their nonincreasing
weights. Thus, after executing the above-described strategy for some optimal
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Results on Plurality (iv)
value 𝑇  , 𝑎’s score is in the set
{𝑎’s original score, 𝑎’s score without its heaviest voter, 𝑎’s score without its two heaviest voters, …}.
Thus it suffices to consider values 𝑇  of this form only (for each candidate)
and to pick one that leads to a cheapest bribery.
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Results on Plurality (v)
Swap-Bribery requires a somewhat different approach. The reason is that
under Swap-Bribery it might not always be optimal to push our preferred
candidate to the top of the votes, but sometimes it may be cheaper and more
effective to replace some high-scoring alternatives with other, low-scoring
ones. To account for such strategies, Elkind et al. (2009c) compute, for each
vote 𝑣, the lowest cost of replacing 𝑣’s current top-alternative with each other
one, and then run a flow-based algorithm.¹

¹What does a flow based algorithm mean? Is this related to Max Cut-Min Flow?
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Results on Plurality (vi)
Dollar Weighted-Bribery is easily shown to be NP-complete thanks to the
partition problem. Given a sequence 𝑠1, 𝑠2, …, 𝑠𝑛; we can make a 2 candidate
election with all the voters voting for the candidate we don’t prefer. Weight of
vote and cost of bribery is both 𝑠𝑖 for the 𝑖th voter. We have a budget of
𝑠1+𝑠2+…+𝑠𝑛

2 .
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Conclusion



Why does all of this matter?
A question one might ask is why prevent manipulation in the first place?

Consider a plurality election with three alternatives. If one of the candidates
is considered to have a poor chance of winning the election (consider, for
example, a third party in the United States), then everyone might vote for one
of the other two candidates, in order to avoid wasting their votes. Is this a
significant problem? Will it not simply result in the same winner that
plurality-with-runoff (or STV) would have chosen (if everyone had voted
truthfully), and is that so bad?

This is a topic which has revived debate in both the COMSOC and Political
Science communities. Some arguments for preventing manipulation are:
• Bad equilibria. It is not at all clear that the resulting winner will be the

same as the true plurality-with-runoff winner. All that is required is that
voters expect the third party to have poor chances. It is possible that this
alternative is actually very much liked across the electorate, but nobody is
aware of this. Even more strikingly, it is possible that everyone is aware of
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Why does all of this matter? (ii)
this, and yet the alternative is expected to perform poorly—for example,
because nobody is aware that others are aware of the alternative’s
popularity. Hence, an alternative that is very much liked, and perhaps
would have won under just about any reasonable rule had everyone voted
truthfully, may not win.

• Lack of information. Even if the bad equilibria described above are in fact
avoided, we cannot be sure that this is the case, because we will never
know exactly how popular that third alternative really was. This also
interferes with the process of identifying more desirable alternatives in the
next election.

• Disenfranchisement of unsophisticated voters. Voters who are less well
informed may end up casting less effective votes than those who are well
informed (for example, votes for the third alternative). Knowledge is power
—but in many elections, this is not considered desirable.

• Wasted effort. Even if all agents manipulate to the same extent, still much
effort, whether of the computational, information gathering, or
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Why does all of this matter? (iii)
communicational variety, is expended in figuring out how to manipulate
well, and presumably this effort could have been more productively spent
elsewhere. This can be seen as a type of tragedy of the commons; everyone
would be better off if nobody spent effort on manipulation, but individually
voters are still better off manipulating.

We would point out that very recently, in the New York Mayor Democratic
Primary elections (the method used is IRV), attempts were made to show
Zohran Mamdani as less popular and hence, convince voters to not waste
votes on him or rank him lower. This fortunately didn’t work and Mamdani
won the nomination.

We are interested in these forms of control as they are quite common. From
the Bush elections where Nader was a spoiler candidate to Miller (2008)
showing that enfranchisement of woman voters (in many nations) was
beneficial for candidates who wanted to increase spending on Infant Health.
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Why does all of this matter? (iv)
We also see this in the papal conclave where Pope Paul VI brought the rule
that cardinals above 80 may not participate in the conclave; effectively
disenfranchising a lot of the conservative cardinals appointed by Pope John
XXIII and Pius XII. We also saw this in the 2025 papal conclave where Pope
Francis controlled the election from beyond the veil as he appointed 110
cardinals (of the 135 candidates and voters).

• There are also some papers in Political economics side like Nichter, 2008
which talk about turnout buying.

• In secret ballots, Finan and Schechter, 2012 explore the effects of bribery.
• The hidden failure of panchayat system due to control and bribery is

explored in Anderson, François and Kotwal (2011).

Lobbying problem (studied by Christian et al. (2007) and later on by
Bredereck et al. (2014a) and Binkele-Raible et al. (2014)): We are given a
collection of yes/no votes over all items independently, where an item is
accepted with a simple majority of yes votes, and is rejected otherwise. The
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Why does all of this matter? (v)
lobby’s goal is to change the outcome to its liking by bribing certain voters
without exceeding its budget.
• I do not remember the source, it is either Dutta, Watson or Dixit’s text on

Game Theory where there is a drawn out example on multiple rounds of
lobbying; similar to bribing the lower, then upper house and then the
president.

• The commonly cited political economics paper is Grossman and Helpman
(1994) and competing lobbies in Groseclose and Snyder (1996).
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Why voting rules matter?
All governments suffer a recurring problem: Power attracts pathological
personalities. It is not that power corrupts but that it is magnetic to the
corruptible.

— Frank Herbert

There is a presentation by Ricardo Visinho, LSE and others titled “The Role of
Sortition in Student Democracy” where we saw that by changing the voting
rule, we were able to avoid power grabs by the usual kind of loud power-
hungry candidates plurality attracts and instead get more meek but well-
meaning candidates.

We also are seeing this in New York where candidates have the option to run
the mayoral race on principal and not go to the lowest common denominator
as the voting system is STV and that does make a difference.
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Conclusion
When voting theory started, it was an branch of political science. Once
money and power entered, it became a branch of economics. And once we
realized the size of nations, it became a problem of computer science.

What we saw?
• Some famous voting rules.
• How computational hardness can help better analyze voting rules.
• We have seen some famous hardness proofs and some famous manipulation

algorithms.

What we didn’t see?
• A lot of voting rules like Ranked Pairs, Black, k-Approval, Maxim, 𝛼-

Condorcet, D21 etc.
• Communication Complexity of Voting Rules aka how much does the voter

need to think
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Conclusion (ii)
• Parametrized and Approximation Algorithms for the hardness. For

example, Borda’s coalition manipuation can be approximated to 1 +optimal
number of manipulators. Also, the winner of Kemeny can be parameterized
to average KT distance.

• A few other types of control. We didn’t see destructive control (where we
don’t want a particular candidate to win) or agenda control.

• A lots of types of bribery as I mentioned in examples.
• Multimodal attacks where control and bribery are happening together.
• Adversarial Attacks where control and bribery are opposing each other.
• Voting on restricted domains (not all prefrences make sense, after all

partisanship is a thing!)
• Game Theoretic voting and Voting against incomplete information and

Candidate Voter Modals.
• Voting on combinatorial domains like matchings or division etc. An

example is the loop that a plurality vote makes when 3 mayors divide a city
fund.
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Conclusion (iii)
• and so much more.

Want to guess why we didn’t see a lot of these? One, because I have in the
two student seminars I have given built a reputation for going over time and I
want to fix that. Two, as a lot of this is open.

As of writing this, we got optimal approximation algorithms for approval or
Condorcet voting via Covering Integer Programs (CIPs) as well as give an
O(m)-approximation algorithm for plurality, and a lower bound Ω(𝑚1

4 ) via
Minimum k-Union (MkU) problem². This was a problem we studied today, in
what was for all practical purposes an introduction to the theory of voting!³

Thanks for listening to me yap and I shall now yap about any
questions you have!

²This was the first application of MkU in computational social choice
³Bui, Chavrimootoo, Le 2025 is the reference and is surprisingly readable.
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Lemma 1
Proof of Lemma 1. As is the case with the previous two theorems, we can
prove something stronger.

Definition 21: Quasi-Condorcet.
Quasi-Condorcet is a weaker form of Condorcet where the winner is atleast
quasi-Condorcet.

𝑎𝑖 is a quasi-Condorcet alternative if (…, 𝑎𝑗, 𝑎𝑖, …) ∈ 𝑓(𝐴) ⟹
(…, 𝑎𝑖, 𝑎𝑗, …) ∈ 𝑓(𝐴). That is we are okay with swaps as long as both
directions are there.

Lemma 4.
The only voting system that satisfies
(a) neutrality
(b) consistency
(c) Quasi-Condorcet winner
is Kemeny Rule, Anti-Kemeny Rule and Trivial function.
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Lemma 1 (ii)
Where

(𝑐1, 𝑐2, …, 𝑐𝑛) ∈ 𝐾(𝑥) ⟺ −𝐾(𝑥) = (𝑐𝑛, …, 𝑐2, 𝑐1)

and

𝑇 (𝑥) = perm(𝑛)
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Lemma 3
Proof of Lemma 3. It is easy to see⁴ that Neutrality and Consistency imply
that our voting rule is only interested in the matrix 𝑀 = 𝑚𝑖,𝑗 where

𝑚𝑖,𝑗 = # voters for whoom 𝑐𝑖 ≻ 𝑐𝑗 − # voters for whoom 𝑐𝑗 ≻ 𝑐𝑖.

This makes 𝑀  skew symmetric and also a representation of a tournament
graph.

We now proceed with a proof by induction.

⁴Although hard to prove
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Lemma 3 (ii)
𝑚 = 2
It is clear that we only need to consider a single graph and single case and we
can see our solutions work and are the only ones that work.

𝑚 = 3
Consistency guarantees that we just need to find the basis (positive, rational,
linear combination) for skew symmetric matrices such that WLOG
(𝐴, 𝐵, 𝐶) ∈ 𝐾(𝑋) where 𝑋 is the matrix. This implies in

𝑋 =
(
((
( 0

−𝑥12
−𝑥13

𝑥12
0

−𝑥23

𝑥13
𝑥23
0 )

))
)

such that
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Lemma 3 (iii)
𝑥12 + 𝑥13 ≥ 0
𝑥12 + 𝑥23 ≥ 0
𝑥13 + 𝑥23 ≥ 0

The solutions to this have the basis

𝑋 =
{{
{
{{

(
((
(0

0
0

0
0
0

0
0
0)
))
);

(
((
( 0

−1
0

1
0
0

0
0
0)
))
);

(
((
( 0

0
−1

0
0
0

1
0
0)
))
);

(
((
(0

0
0

0
0

−1

0
1
0)
))
);

(
((
( 0

−1
1

1
0

−1

−1
1
0 )

))
)

}}
}
}}

We can now check the winners for all of these and get that 𝐾 only works. A
similar process will work for −𝐾 and 𝑇 .
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Lemma 3 (iv)
𝑚 ≥ 4
By consistency, 𝑓−1(𝜎) = {𝑥 | 𝜎 ∈ 𝑓(𝑥)} is convex for all 𝜎. We will now
sketch the proof (filling the details is to some extent busy work and to some
extent the actual work of the proof):
• Show that the interiors of the convex sets 𝑓−1(𝜎) and 𝑓−1(𝜏) are disjoint

for all 𝜎, 𝜏 .
• Consider the case where 𝜎 and 𝜏  are neighbors. It is sufficient(by neutrality)

to consider the case where is the identity 𝑒.
• As the sets are convex, we can find a hyper plane separating 𝜎 and 𝑒.⁵
• Consider some matrices similar to the 3 case and figure out the orientation

of this separating wall. The induction hypothesis is useful for this step.
• We can show that this wall is same as for 𝐾 , this would imply 𝑓(𝑋) ⊆

𝐾(𝑋). The induction hypothesis is useful for this step.

⁵This is called the Hyperplane separation theorem and is hard to prove, despite seeming
almost obvious.
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Lemma 3 (v)
• We show by contradiction that that there is no 𝑎 ∈ 𝐾(𝑋) such that 𝑎 ∉

𝑓(𝑋).

This proves our lemma. □

By imposing Condorcet, Lemma 3 implies Lemma 1. □.
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Lemma 2
Proof of Lemma 2. We prove this by showing reduction from Feedback Arc
Set.

Definition 22: Feedback Arc Set.
Input: Directed graph 𝐺, with vertices 𝑉  and positive integer 𝐾 .
Question: Is there a subset of no more than 𝐾 arcs which includes at least
one arc from every cycle in 𝐺?

Given an instance of feedback arc set, we can move to a voting scenario with
𝑂(poly(|𝑉 |)) voters and 𝑉  acting as alternatives where if (𝑖, 𝑗) ∈ 𝐺 then
|𝑉 | +2

2  voters will vote for 𝑖 over 𝑗 and |𝑉 |−2
2  voters will vote for 𝑗 over 𝑖.

It is mere bookkeeping to show that if we can get a consensus with Kemeny
score less than, equal to

|𝑉 | (|𝑉 | − 1)(|𝑉 | − 2)
2

+ 4𝐾
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Lemma 2 (ii)
then we have a feedback arc and not otherwise. □
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Proof of NP Hardness of Copeland
Proof. We will show a reduction from 3,4-SAT (Every clause has 3 variables
and every variable appears in 4 clauses). Note, this implies the number of
clauses is even.

Given 𝐶1, 𝐶2, …, 𝐶𝑚 as our clauses and 𝑋1, 𝑋2, …, 𝑋𝑛 as our variables; we
make a tournament with candidates
• Clauses: 𝐶𝑖(𝑖 = 1…𝑚)
• literals 𝑋𝑖, ¬𝑋𝑗(𝑗 = 1…𝑚)
• fillers: 𝑓𝑘(𝑖 = 1…30𝑚)
• distinguished candidate 𝐶0
• balencing contestent 𝑏

We orient our edges as
• Each litral defeats all clauses expect the ones containing it.
• Arrange 𝐶𝑖(0 ≤ 𝑖 ≤ 𝑚)(aka clauses and distinguished candidate) on a

roundtable with 2(𝑚 + 1) seats in alternating manner such that the seat
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Proof of NP Hardness of Copeland (ii)
diametrically opposite is empty. Let 𝐶𝑖 defeat the people on his right and
lose to people on his left.

• We do the same scheme with litrals. This time such that 𝑋𝑖 and ¬𝑋𝑖 are
diametrically opposed. 𝑋𝑖 defeats people on their right and loses to people
on their left. The match between 𝑋𝑖, ¬𝑋𝑖 will be talked about later.

• Arrange the fillers on a roundtable with the order
𝑓1, 𝑓3, …𝑓30𝑚−1, 𝑓2, 𝑓4, …, 𝑓30𝑚. Each filler defeats 15𝑚 − 1 fillers to it’s
right and loses to 15𝑚 − 1 filers to it’s left. In the diametrically opposed
fillers, the even defeats the odd.

• Every filler defeats every literal
• 𝐶0 defeats 𝑋1 and ¬𝑋1 but loses to 𝑋𝑗 and ¬𝑋𝑗 for 2 ≤ 𝑗 ≤ 𝑛.
• 𝐶0 defeats 𝑏
• 𝑏 defeats all clauses.
• 𝑏 loses to all litrals
• 𝑏 loses to all but the last 𝑛 + 4 fillers.

75/81



Proof of NP Hardness of Copeland (iii)
• For 𝐶𝑖(0 ≤ 𝑖 ≤ 𝑚), define 𝑓26𝑖+1, 𝑓26𝑖+2, …, 𝑓26𝑖+26 to be associates of 𝐶𝑖.

Thus, 𝐶𝑖⁶ has 26 associates, no filler is an associate of more than one 𝐶𝑖 and
nearly 4𝑚 fillers are not associates. 𝐶𝑖 defeats all it’s non-associates and 13
of it’s associates (choose the even indexed ones).

Note that we have left edges between 𝑋𝑖 and ¬𝑋𝑖 undecided. Let the
assignment of these be 𝑅.

Lemma 5.
For any any 𝑅, 𝐶𝑖(0 ≤ 𝑖 ≤ 𝑚) are tied to win under the Copeland rule.

Proof

𝑆(𝐶𝑖)(0 ≤ 𝑖 ≤ 𝑚) = 𝑚
2

+ 3 + 0 + (30𝑚 − 13)

= 𝑚
2

+ 2 + 1 + (30𝑚 − 13) = 𝑆(𝐶0)

⁶The paper has an typo as C_1 is written here which is plain wrong.
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Proof of NP Hardness of Copeland (iv)
where the victories are over 𝐶𝑖(0 ≤ 𝑖 ≤ 𝑚), litrals, 𝐵 and fillers.

The graph has 1 + 𝑚 + 2𝑛 + 30𝑚 + 1 = 31𝑚 + 2𝑛 + 2 = 31𝑚 + 3𝑚
2 + 2 =

65𝑚
2 + 2 nodes. 𝐵 loses to 26𝑚 fillers, each filler loses to atleast 14𝑚 fillers,

each litral loses to atleast 30m fillers; hence for all 𝑣 ≠ 𝑐𝑖, 𝑆(𝑣) ≤ 𝑆(𝐶𝑖).∎

Lemma 6.
The second order Copeland score of 𝐶0 is is independent of 𝑅.

Proof The only first order copeland scores we don’t know are of the litrals
(where the only thing we don’t know is the result between 𝑋𝑖 and ¬𝑋𝑖). But
as 𝐶0 defeats both 𝑋1 and ¬𝑋1, we will be left with a constant 𝑆2(𝐶0)
independent of 𝑅. ∎

Lemma 7.
For all non-clause candidates, second order Copeland scores are less than
𝑆2(𝐶0) for any 𝑅.
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Proof of NP Hardness of Copeland (v)
Proof For any 𝐶𝑖, the portion of second order score comming from fillers is
about 30𝑚 ∗ (15𝑚 + 2𝑛) > 480𝑚2. As in Lemma 1 of the proof, every other
nodes loses to atleast 14𝑚 fillers. Hence, the filler portion of other second
order scores will be smaller by atleast 14𝑚(15𝑚 + 2) > 225𝑚2. This is a
huge deficit which can’t be covered by the remaining 𝑚 nodes, which can
atmost contribute 16𝑚 each. ∎

Lemma 8.
The second order copeland scores of 𝐶𝑖(1 ≤ 𝑖 ≤ 𝑚) ignoring the undecided
edges is 𝑆2(𝐶0) − 3.

Let this tentative second order copeland score be reprasented by 𝑇 2(𝐶𝑖). We
will first try to show that 𝑇 2(𝐶𝑖) = 𝑇 2(𝐶𝑖+1) and hence, 𝑇 2(𝐶1) =
𝑇 2(𝐶2) = … = 𝑇 2(𝐶𝑚).

Define 𝐿(𝐶𝑖) be the total number (counting repetitions) of clauses of which
the literals in 𝐶𝑖 are members, plus 1 if 𝐶𝑖 contains 𝑋1 or ¬𝑋1. We count 𝐶0
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Proof of NP Hardness of Copeland (vi)
as containing 𝑋1 and ¬𝑋1. Thus, 𝐿(𝐶𝑖) is the number of contests won by one
of 𝐶𝑗(0 ≤ 𝑗 ≤ 𝑚), against the three literals that comprise 𝐶𝑖.

Consider 𝑇 2(𝐶𝑖) − 𝑇 𝐶𝑖+1 = 𝐷𝐶 + 𝐷𝐵 + 𝐷𝐿 + 𝐷𝐹  where 𝐷 reprasents
difference due to clauses, balence, litrals and fillers. Notice,
• 𝐷𝐶 = 0 as both beat 𝑚2  clauses.
• 𝐷𝐵 = 0 as both beat 𝐵.
• 𝐷𝐿 = 3(𝑚 + 𝑛 + 1) − 𝐿(𝐶𝑖) − [3(𝑚 + 𝑛 + 1) − 𝐿(𝐶𝑖+1)] = 𝐿(𝐶𝑖+1) −

𝐿(𝐶𝑖)
• 𝐷𝐹 = 0 from non associate fillers + 𝐿(𝐶𝑖) − 𝐿(𝐶𝑖+1) + 13 − 13 =

𝐿(𝐶𝑖) − 𝐿(𝐶𝑖+1)

Thus, 𝑇 (𝐶𝑖) = 𝑇 (𝐶𝑖).

Now we do the same procedure on 𝑆2(𝐶0) − 𝑇 (𝐶1)
• 𝐷𝐶 = 0 as both beat 𝑚2  clauses.
• 𝐷𝐵 = 𝑚 + 𝑛 + 4 as 𝐶0 beats 𝐵.
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Proof of NP Hardness of Copeland (vii)
• 𝐷𝐿 = 2(𝑛 + 𝑚 + 1) − 𝐿(𝐶0) − 3(𝑛 + 𝑚 + 1) + 𝐿(𝐶1) = −(𝑛 + 𝑚 +

1) + 𝐿(𝐶1) − 𝐿(𝐶0)⁷
• 𝐷𝐹 = 𝑙(𝐶0) − 𝐿(𝐶1)

Thus, the difference is 𝑚 + 𝑛 + 4 − 𝑛 − 𝑚 − 1 = 3. ∎

To finally finish this proof, we claim that a 𝑅 which make 𝑐 the sole winner
only exist if and only if the 3,4-SAT is satisfiable.

Imagine candidate 𝐶1(𝑖 = 𝑙…𝑚) during the last round of contests. His own
contests are over, so his second order Copeland score has been determined,
and by lemma 4, is currently 3 points short of a share of first place with 𝐶0
and possibly other 𝐶𝑗.

By construction, 𝐶𝑖 has lost to all but 3 of the literals, so the outcomes of only
3 contests (those containing the literals defeated by 𝐶𝑖) could improve his

⁷There is a typo in the sign here, in the orignal paper!
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Proof of NP Hardness of Copeland (viii)
second-order score. If all 3 contests go as 𝐶𝑖 wishes (the candidates that 𝐶𝑖
defeated win their contests), then 𝐶𝑖′𝑠 second-order score will equal that of
𝐶0.

Interpreting a literal losing to its complement as the literal being set to TRUE
in the instance of 3,4-SAT, candidate 𝐶𝑖 will lose to 𝑐 if and only if clause 𝐶𝑖 is
satisfied. Thus satisfiability of the 3,4-SAT expression corresponds precisely
to all of the 𝐶𝑖’s (𝑖 = …𝑚) being defeated by 𝐶0.

We can create a set of voter’s 𝑉  which realizes this graph such that every
edge other than between 𝑋𝑖 and ¬𝑋𝑖 is decided by 2 votes and these are tied.
Thus, the mnaiuplater can only decide 𝑅 which is NP-complete. ∎
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